Role of the microstructure on the transport properties of Y-doped zirconia and Gd-doped ceria

[1]  C. Petot,et al.  The influence of alumina on the microstructure and grain boundary conductivity of yttria-doped zirconia , 2002 .

[2]  Changrong Xia,et al.  Low-temperature SOFCs based on Gd0.1Ce0.9O1.95 fabricated by dry pressing , 2001 .

[3]  Harry L. Tuller,et al.  Ionic conduction in nanocrystalline materials , 2000 .

[4]  G. Petot-ervas,et al.  Experimental procedure for the determination of diffusion coefficients in ionic compounds – Application to yttrium-doped zirconia , 1999 .

[5]  G. Petot-ervas,et al.  Electrode materials, interface processes and transport properties of yttria-doped zirconia , 1997 .

[6]  Y. Chiang,et al.  Solute Segregation and Grain‐Boundary Impedance in High‐Purity Stabilized Zirconia , 1996 .

[7]  C. Chateau,et al.  Ionic conductivity of yttrium-doped zirconia and the “composite effect” , 1995 .

[8]  S. Badwal Grain boundary resistivity in zirconia-based materials: effect of sintering temperatures and impurities , 1995 .

[9]  N. Minh Ceramic Fuel Cells , 1993 .

[10]  Anil V. Virkar,et al.  Theoretical Analysis of Solid Oxide Fuel Cells with Two‐Layer, Composite Electrolytes: Electrolyte Stability , 1991 .

[11]  Yasunori Baba,et al.  High Temperature Fuel Cell with Ceria‐Yttria Solid Electrolyte , 1988 .

[12]  R. Kikuchi,et al.  Cation Diffusion and Conductivity in Solid Electrolytes. I , 1971 .

[13]  G. Petot-ervas,et al.  Kinetic demixing and grain boundary conductivity of yttria-doped zirconia part I - experimental observations , 2001 .

[14]  K. H. Westmacott,et al.  Microstructure and ionic conductivity of freeze-dried yttria-doped zirconia , 1998 .