GWAS and enrichment analyses of non-alcoholic fatty liver disease identify new trait-associated genes and pathways across eMERGE Network

[1]  E. Speliotes,et al.  17‐Beta Hydroxysteroid Dehydrogenase 13 Is a Hepatic Retinol Dehydrogenase Associated With Histological Features of Nonalcoholic Fatty Liver Disease , 2019, Hepatology.

[2]  E. Bugianesi,et al.  NASH in Lean Individuals , 2019, Seminars in Liver Disease.

[3]  Matthew S. Lebo,et al.  The eMERGE genotype set of 83,717 subjects imputed to ~40 million variants genome wide and association with the herpes zoster medical record phenotype , 2018, Genetic epidemiology.

[4]  L. Polito,et al.  The role of xanthine oxidoreductase and uric acid in metabolic syndrome. , 2018, Biochimica et biophysica acta. Molecular basis of disease.

[5]  Alexander E. Lopez,et al.  A Protein‐Truncating HSD17B13 Variant and Protection from Chronic Liver Disease , 2018, The New England journal of medicine.

[6]  Daniel E. Miller,et al.  Transcription factors operate across disease loci, with EBNA2 implicated in autoimmunity , 2018, Nature Genetics.

[7]  Zuo-Feng Zhang,et al.  Genetic variants in COL13A1, ADIPOQ and SAMM50, in addition to the PNPLA3 gene, confer susceptibility to elevated transaminase levels in an admixed Mexican population. , 2018, Experimental and molecular pathology.

[8]  T. Kawaguchi,et al.  Risk estimation model for nonalcoholic fatty liver disease in the Japanese using multiple genetic markers , 2018, PloS one.

[9]  Michael Charlton,et al.  The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases , 2018, Hepatology.

[10]  Erdogan Taskesen,et al.  Functional mapping and annotation of genetic associations with FUMA , 2017, Nature Communications.

[11]  I. Hasan,et al.  Association between Serum Uric Acid and Non-Alcoholic Fatty Liver Disease: A Meta-Analysis. , 2017, Acta medica Indonesiana.

[12]  T. Takeuchi,et al.  Silencing of FABP1 ameliorates hepatic steatosis, inflammation, and oxidative stress in mice with nonalcoholic fatty liver disease , 2017, FEBS open bio.

[13]  C. Kahn,et al.  Thermoneutral housing exacerbates non-alcoholic fatty liver disease in mice and allows for sex-independent disease modeling , 2017, Nature Medicine.

[14]  S. Sookoian,et al.  Genetic predisposition in nonalcoholic fatty liver disease , 2017, Clinical and molecular hepatology.

[15]  Svetlana Ukraintseva,et al.  haploR: an R package for querying web-based annotation tools , 2017, F1000Research.

[16]  Helen E. Parkinson,et al.  The new NHGRI-EBI Catalog of published genome-wide association studies (GWAS Catalog) , 2016, Nucleic Acids Res..

[17]  J. Knight,et al.  XGR software for enhanced interpretation of genomic summary data, illustrated by application to immunological traits , 2016, Genome Medicine.

[18]  C. Tiribelli,et al.  Th17 involvement in nonalcoholic fatty liver disease progression to non-alcoholic steatohepatitis , 2016, World journal of gastroenterology.

[19]  Alan M. Kwong,et al.  Next-generation genotype imputation service and methods , 2016, Nature Genetics.

[20]  Zhihai Peng,et al.  Additive Effects of the Risk Alleles of PNPLA3 and TM6SF2 on Non-alcoholic Fatty Liver Disease (NAFLD) in a Chinese Population , 2016, Front. Genet..

[21]  Li Fang,et al.  PPARgene: A Database of Experimentally Verified and Computationally Predicted PPAR Target Genes , 2016, PPAR research.

[22]  Maria E. Moreno-Fernandez,et al.  Regulation of Inflammation by IL-17A and IL-17F Modulates Non-Alcoholic Fatty Liver Disease Pathogenesis , 2016, PloS one.

[23]  N. Schork,et al.  Heritability of Hepatic Fibrosis and Steatosis Based on a Prospective Twin Study. , 2015, Gastroenterology.

[24]  Ellen T. Gelfand,et al.  A Novel Approach to High-Quality Postmortem Tissue Procurement: The GTEx Project , 2015, Biopreservation and biobanking.

[25]  J. Corton,et al.  Specificity protein (Sp) transcription factors and metformin regulate expression of the long non-coding RNA HULC , 2015, Oncotarget.

[26]  J. Denny,et al.  Extracting research-quality phenotypes from electronic health records to support precision medicine , 2015, Genome Medicine.

[27]  Joris M. Mooij,et al.  MAGMA: Generalized Gene-Set Analysis of GWAS Data , 2015, PLoS Comput. Biol..

[28]  Carson C Chow,et al.  Second-generation PLINK: rising to the challenge of larger and richer datasets , 2014, GigaScience.

[29]  Joris M. Mooij,et al.  MAGMA: Generalized Gene-Set Analysis of GWAS Data , 2015, PLoS Comput. Biol..

[30]  Joshua C. Denny,et al.  R PheWAS: data analysis and plotting tools for phenome-wide association studies in the R environment , 2014, Bioinform..

[31]  T. Yada,et al.  TRIB1 downregulates hepatic lipogenesis and glycogenesis via multiple molecular interactions. , 2014, Journal of molecular endocrinology.

[32]  Rohit Kohli,et al.  IL-17 Signaling Accelerates the Progression of Nonalcoholic Fatty Liver Disease in Mice , 2014, Hepatology.

[33]  M. Trauner,et al.  Role of FDFT1 polymorphism for fibrosis progression in patients with chronic hepatitis C , 2014, Liver international : official journal of the International Association for the Study of the Liver.

[34]  T. Kitamoto,et al.  Association of polymorphisms in GCKR and TRIB1 with nonalcoholic fatty liver disease and metabolic syndrome traits. , 2014, Endocrine journal.

[35]  Rohit Loomba,et al.  The global NAFLD epidemic , 2013, Nature Reviews Gastroenterology &Hepatology.

[36]  S. Elbeg,et al.  Serum liver fatty acid binding protein shows good correlation with liver histology in NASH. , 2013, Hepato-gastroenterology.

[37]  G. Targher,et al.  Progression of NAFLD to diabetes mellitus, cardiovascular disease or cirrhosis , 2013, Nature Reviews Gastroenterology &Hepatology.

[38]  T. Kitamoto,et al.  Genome-wide scan revealed that polymorphisms in the PNPLA3, SAMM50, and PARVB genes are associated with development and progression of nonalcoholic fatty liver disease in Japan , 2013, Human Genetics.

[39]  N. Chalasani,et al.  Annals of the New York Academy of Sciences Nonalcoholic Fatty Liver Disease: an Emerging Threat to Obese and Diabetic Individuals , 2022 .

[40]  I. Borecki,et al.  Genetic Analysis of 16 NMR-Lipoprotein Fractions in Humans, the GOLDN Study , 2013, Lipids.

[41]  F. Eren,et al.  Hepatic expression and serum levels of syndecan 1 (CD138) in patients with nonalcoholic fatty liver disease , 2012, Scandinavian journal of gastroenterology.

[42]  E. Boerwinkle,et al.  PNPLA3 polymorphisms and liver aminotransferase levels in a Mexican American population. , 2012, Clinical and investigative medicine. Medecine clinique et experimentale.

[43]  Karen L. Mohlke,et al.  Novel Loci for Adiponectin Levels and Their Influence on Type 2 Diabetes and Metabolic Traits: A Multi-Ethnic Meta-Analysis of 45,891 Individuals , 2012, PLoS genetics.

[44]  Manolis Kellis,et al.  HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants , 2011, Nucleic Acids Res..

[45]  Avner Schlessinger,et al.  ICAHN SCHOOL OF MEDICINE AT MOUNT SINAI , 2012 .

[46]  Dana C Crawford,et al.  Pitfalls of merging GWAS data: lessons learned in the eMERGE network and quality control procedures to maintain high data quality , 2011, Genetic epidemiology.

[47]  Christian Gieger,et al.  Genome-wide association study identifies loci influencing concentrations of liver enzymes in plasma , 2011, Nature Genetics.

[48]  Jonathan C. Cohen,et al.  Expression and Characterization of a PNPLA3 Protein Isoform (I148M) Associated with Nonalcoholic Fatty Liver Disease* , 2011, The Journal of Biological Chemistry.

[49]  N. Chalasani,et al.  Endpoints and clinical trial design for nonalcoholic steatohepatitis , 2011, Hepatology.

[50]  Udo Hoffmann,et al.  Genome-Wide Association Analysis Identifies Variants Associated with Nonalcoholic Fatty Liver Disease That Have Distinct Effects on Metabolic Traits , 2011, PLoS genetics.

[51]  P. Visscher,et al.  GCTA: a tool for genome-wide complex trait analysis. , 2011, American journal of human genetics.

[52]  Rongling Li,et al.  Quality Control Procedures for Genome‐Wide Association Studies , 2011, Current protocols in human genetics.

[53]  H. Tilg,et al.  Adipose and Liver Expression of Interleukin (IL)-1 Family Members in Morbid Obesity and Effects of Weight Loss , 2011, Molecular medicine.

[54]  Wendy A. Wolf,et al.  The eMERGE Network: A consortium of biorepositories linked to electronic medical records data for conducting genomic studies , 2011, BMC Medical Genomics.

[55]  O. Cummings,et al.  Genome-wide association study identifies variants associated with histologic features of nonalcoholic Fatty liver disease. , 2010, Gastroenterology.

[56]  Michael Boehnke,et al.  LocusZoom: regional visualization of genome-wide association scan results , 2010, Bioinform..

[57]  Marylyn D. Ritchie,et al.  PheWAS: demonstrating the feasibility of a phenome-wide scan to discover gene–disease associations , 2010, Bioinform..

[58]  Nick V. Grishin,et al.  A Sequence Variation (I148M) in PNPLA3 Associated with Nonalcoholic Fatty Liver Disease Disrupts Triglyceride Hydrolysis , 2009, The Journal of Biological Chemistry.

[59]  P. Donnelly,et al.  Genome-wide association study of ulcerative colitis identifies three new susceptibility loci, including the HNF4A region , 2010 .

[60]  N. Schork,et al.  Heritability of nonalcoholic fatty liver disease. , 2009, Gastroenterology.

[61]  Xia Yang,et al.  Validation of Candidate Causal Genes for Abdominal Obesity Which Affect Shared Metabolic Pathways and Networks , 2009, Nature Genetics.

[62]  Richard J. Johnson,et al.  Uric Acid: The Oxidant-Antioxidant Paradox , 2008, Nucleosides, nucleotides & nucleic acids.

[63]  D. Reich,et al.  Principal components analysis corrects for stratification in genome-wide association studies , 2006, Nature Genetics.

[64]  Wj Gauderman,et al.  QUANTO 1.1: A computer program for power and sample size calculations for genetic-epidemiology studies , 2006 .

[65]  O. Cummings,et al.  Design and validation of a histological scoring system for nonalcoholic fatty liver disease , 2005, Hepatology.

[66]  C. Ahn,et al.  Metabolic significance of nonalcoholic fatty liver disease in nonobese, nondiabetic adults. , 2004, Archives of internal medicine.

[67]  G. Warshaw,et al.  University of Cincinnati College of Medicine , 2004, Academic medicine : journal of the Association of American Medical Colleges.

[68]  Hilde van der Togt,et al.  Publisher's Note , 2003, J. Netw. Comput. Appl..

[69]  Wendy W. Chapman,et al.  A Simple Algorithm for Identifying Negated Findings and Diseases in Discharge Summaries , 2001, J. Biomed. Informatics.

[70]  H. Tilg,et al.  Cytokines in alcoholic and nonalcoholic steatohepatitis. , 2000, The New England journal of medicine.