A new quotidian equation of state (QEOS) for hot dense matter

The quotidian equation of state (QEOS) is a general‐purpose equation of state model for use in hydrodynamic simulation of high‐pressure phenomena. Electronic properties are obtained from a modified Thomas–Fermi statistical model, while ion thermal motion is described by a multiphase equation of state combining Debye, Gruneisen, Lindemann, and fluid‐scaling laws. The theory gives smooth and usable predictions for ionization state, pressure, energy, entropy, and Helmholtz free energy. When necessary, the results may be modified by a temperature‐dependent pressure multiplier which greatly extends the class of materials that can be treated with reasonable accuracy. In this paper a comprehensive evaluation of the resulting thermodynamic data is given including comparison with other theories and shock‐wave data.

[1]  More,et al.  Statistical mechanics of a two-temperature, classical plasma. , 1986, Physical review. A, General physics.

[2]  W. G. Hoover,et al.  Generalized van der Waals equation of state , 1975 .

[3]  R. Grover Liquid Metal Equation of State Based on Scaling , 1971 .

[4]  C. Joachain,et al.  Atomic and molecular physics of controlled thermonuclear fusion , 1983 .

[5]  R. More,et al.  An electron conductivity model for dense plasmas , 1984 .

[6]  N. Mott,et al.  The Theory of the Properties of Metals and Alloys , 1933 .

[7]  G. R. Gathers,et al.  Properties of hot expanded liquid aluminum , 1984 .

[8]  J. F. Barnes Statistical Atom Theory and the Equation of State of Solids , 1967 .

[9]  J. K. Wolford,et al.  Theory of the aluminum shock equation of state to 104 Mbar , 1985 .

[10]  R. More Quantum-statistical model for high-density matter , 1979 .

[11]  H. Knoepfel,et al.  Physics of high energy density , 1971 .

[12]  J. Hansen,et al.  Statistical mechanics of simple coulomb systems , 1980 .

[13]  I. R. Mcdonald,et al.  Theory of simple liquids , 1998 .

[14]  H. Knoepfel,et al.  PHYSICS OF HIGH-ENERGY DENSITY. Proceedings of the International School of Physics, Enrico Fermi, Varenna, Italy, 14th--26th July 1969. Course XLVIII. , 1971 .

[15]  V. Fortov,et al.  Model equations of state , 1983 .

[16]  K. Gschneidner Physical Properties and Interrelationships of Metallic and Semimetallic Elements , 1964 .

[17]  S. P. Gill,et al.  Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena , 2002 .

[18]  R. More Atomic processes in high-density plasmas , 1983 .

[19]  J. Schwinger Thomas-Fermi model: The leading correction , 1980 .

[20]  S. Marsh Lasl Shock Hugoniot Data , 1980 .

[21]  M. Ross,et al.  Matter under extreme conditions of temperature and pressure , 1985 .

[22]  N. Metropolis,et al.  Equations of State of Elements Based on the Generalized Fermi-Thomas Theory , 1949 .

[23]  V. Fortov,et al.  Physical properties of high-pressure plasmas , 1983 .

[24]  S. Sikka,et al.  Equation of state theories of condensed matter up to about 10 TPa , 1983 .

[25]  R. More Pressure Ionization, Resonances, and the Continuity of Bound and Free States , 1985 .

[26]  J. Scott,et al.  LXXXII. The binding energy of the Thomas-Fermi Atom , 1952 .

[27]  W. Nellis,et al.  Equation of state of molecular hydrogen and deuterium from shock-wave experiments to 760 kbar , 1983 .

[28]  J. Briand Atoms in unusual situations , 1986 .

[29]  D. A. Kirzhnits,et al.  Statistical model of matter , 1975 .