Multi-modal image set registration and atlas formation

In this paper, we present a Bayesian framework for both generating inter-subject large deformation transformations between two multi-modal image sets of the brain and for forming multi-class brain atlases. In this framework, the estimated transformations are generated using maximal information about the underlying neuroanatomy present in each of the different modalities. This modality independent registration framework is achieved by jointly estimating the posterior probabilities associated with the multi-modal image sets and the high-dimensional registration transformations mapping these posteriors. To maximally use the information present in all the modalities for registration, Kullback-Leibler divergence between the estimated posteriors is minimized. Registration results for image sets composed of multi-modal MR images of healthy adult human brains are presented. Atlas formation results are presented for a population of five infant human brains.

[1]  Peter Lorenzen,et al.  Structural and radiometric asymmetry in brain images , 2003, Medical Image Anal..

[2]  Paul Suetens,et al.  Non-rigid Multimodal Image Registration Using Mutual Information , 1998, MICCAI.

[3]  Paul Suetens,et al.  An Information Theoretic Approach for Non-rigid Image Registration Using Voxel Class Probabilities , 2003, WBIR.

[4]  Michael I. Miller,et al.  Deformable templates using large deformation kinematics , 1996, IEEE Trans. Image Process..

[5]  U. Grenander,et al.  Computational anatomy: an emerging discipline , 1998 .

[6]  Guido Gerig,et al.  Unbiased diffeomorphic atlas construction for computational anatomy , 2004, NeuroImage.

[7]  L. Younes,et al.  On the metrics and euler-lagrange equations of computational anatomy. , 2002, Annual review of biomedical engineering.

[8]  James S. Duncan,et al.  Medical Image Analysis , 1999, IEEE Pulse.

[9]  W. Hoeffding,et al.  Distinguishability of Sets of Distributions , 1958 .

[10]  Paul Suetens,et al.  An Information Theoretic Approach for Non-rigid Image Registration Using Voxel Class Probabilities , 2003, MICCAI.

[11]  Olivier D. Faugeras,et al.  Variational Methods for Multimodal Image Matching , 2002, International Journal of Computer Vision.

[12]  R. A. Leibler,et al.  On Information and Sufficiency , 1951 .

[13]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[14]  Godfried T. Toussaint,et al.  Comments on "The Divergence and Bhattacharyya Distance Measures in Signal Selection" , 1972, IEEE Transactions on Communications.

[15]  U. Grenander,et al.  Statistical methods in computational anatomy , 1997, Statistical methods in medical research.

[16]  G. Christensen,et al.  Large Deformation Fluid Diffeomorphisms for Landmark and Image Matching , 1999 .

[17]  Sarang C. Joshi,et al.  High-Dimensional Multi-modal Image Registration , 2003, WBIR.

[18]  Gary E. Christensen,et al.  Large Deformation Inverse Consistent Elastic Image Registration , 2003, IPMI.

[19]  Peter Lorenzen,et al.  Model based symmetric information theoretic large deformation multi-modal image registration , 2004, 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821).

[20]  Guido Gerig,et al.  Automatic brain tumor segmentation by subject specific modification of atlas priors. , 2003, Academic radiology.

[21]  R. Woods,et al.  Mathematical/computational challenges in creating deformable and probabilistic atlases of the human brain , 2000, Human brain mapping.

[22]  H. Jeffreys An invariant form for the prior probability in estimation problems , 1946, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[23]  Paul Suetens,et al.  A viscous fluid model for multimodal non-rigid image registration using mutual information , 2003, Medical Image Anal..

[24]  David Rey,et al.  Symmetrization of the Non-rigid Registration Problem Using Inversion-Invariant Energies: Application to Multiple Sclerosis , 2000, MICCAI.

[25]  Michael I. Miller,et al.  Group Actions, Homeomorphisms, and Matching: A General Framework , 2004, International Journal of Computer Vision.

[26]  William M. Wells,et al.  Multi-modal image registration by minimizing Kullback-Leibler distance between expected and observed joint class histograms , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[27]  Koenraad Van Leemput,et al.  Automated model-based bias field correction of MR images of the brain , 1999, IEEE Transactions on Medical Imaging.

[28]  Peter Lorenzen,et al.  Multi-class Posterior Atlas Formation via Unbiased Kullback-Leibler Template Estimation , 2004, MICCAI.

[29]  Michael I. Miller,et al.  Landmark matching via large deformation diffeomorphisms , 2000, IEEE Trans. Image Process..

[30]  T. Kailath The Divergence and Bhattacharyya Distance Measures in Signal Selection , 1967 .

[31]  Daniel Rueckert,et al.  Consistent groupwise non-rigid registration for atlas construction , 2004, 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821).

[32]  Guido Gerig,et al.  A brain tumor segmentation framework based on outlier detection , 2004, Medical Image Anal..

[33]  Daniel Rueckert,et al.  Non-rigid Registration of Breast MR Images Using Mutual Information , 1998, MICCAI.

[34]  Koenraad Van Leemput,et al.  Automated model-based tissue classification of MR images of the brain , 1999, IEEE Transactions on Medical Imaging.

[35]  Paul Suetens,et al.  A Viscous Fluid Model for Multimodal Non-rigid Image Registration Using Mutual Information , 2002, MICCAI.

[36]  Colin Studholme,et al.  An overlap invariant entropy measure of 3D medical image alignment , 1999, Pattern Recognit..

[37]  Peter Lorenzen,et al.  Large deformation minimum mean squared error template estimation for computational anatomy , 2004, 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821).