Recognition of graphs with threshold dimension two
暂无分享,去创建一个
[1] Peter L. Hammer,et al. Some properties of 2-threshold graphs , 1989, Networks.
[2] Dominique de Werra,et al. Four classes of perfectly orderable graphs , 1987, J. Graph Theory.
[3] Fred S. Roberts,et al. Applications of combinatorics and graph theory to the biological and social sciences , 1989 .
[4] Klaus Simon. Effiziente Algorithmen für perfekte Graphen , 1992, Leitfäden und Monographien der Informatik.
[5] P. Hammer,et al. Aggregation of inequalities in integer programming. , 1975 .
[6] Margaret B. Cozzens,et al. Multidimensional scaling and threshold graphs , 1987 .
[7] T. Ibaraki,et al. Sufficient Conditions for Graphs to Have Threshold Number 2 , 1981 .
[8] Yechezkel Zalcstein,et al. A Graph-Theoretic Characterization of the PV_chunk Class of Synchronizing Primitives , 1977, SIAM J. Comput..
[9] Margaret B. Cozzens,et al. The relationship between the threshold dimension of split graphs and various dimensional parameters , 1991, Discret. Appl. Math..
[10] Toshihide Ibaraki,et al. Threshold Numbers and Threshold Completions , 1981 .
[11] Edward T. Ordman,et al. Minimal Threshold Separators and Memory Requirements for Synchronization , 1989, SIAM J. Comput..
[12] M. Yannakakis. The Complexity of the Partial Order Dimension Problem , 1982 .
[13] Fred S. Roberts,et al. On dimensional properties of graphs , 1989, Graphs Comb..
[14] F. Roberts. Graph Theory and Its Applications to Problems of Society , 1987 .
[15] Jan Kratochvíl. A Special Planar Satisfiability Problem and a Consequence of Its NP-completeness , 1994, Discret. Appl. Math..
[16] Nadimpalli V. R. Mahadev,et al. Strict 2-threshold graphs , 1988, Discret. Appl. Math..
[17] J. Orlin. The Minimal Integral Separator of A Threshold Graph , 1977 .
[18] Margaret B. Cozzens,et al. Threshold Dimension of Graphs , 1984 .
[19] Peter L. Hammer,et al. Bipartite bithreshold graphs , 1993, Discret. Math..
[20] R. Möhring. Algorithmic graph theory and perfect graphs , 1986 .