Generating fast Fourier transforms of solvable groups

Abstract This paper presents a new algorithm for constructing a complete list of pairwise inequivalent ordinary irreducible representations of a finite solvable group G . The input of the algorithm is a pc presentation corresponding to a composition series refining a chief series of G . Modifying the Baum–Clausen algorithm for supersolvable groups and combining this with an idea of Plesken for constructing intertwining spaces, we derive a worst-case upper complexity bound O ( p ·| G | 2 log(| G |)), where p is the largest prime divisor of | G |. The output of the algorithm is well suited to performing a fast Fourier transform of G . For supersolvable groups there are composition series which are already chief series. In this case the generation of discrete Fourier transforms can be done more efficiently than in the solvable case. We report on a recent implementation for the class of supersolvable groups.

[1]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[2]  Markus Püschel Konstruktive Darstellungstheorie und Algorithmengenerierung , 1998 .

[3]  Michael Clausen,et al.  Fast Generalized Fourier Transforms , 1989, Theor. Comput. Sci..

[4]  W. Kester Fast Fourier Transforms , 2003 .

[5]  Michael Clausen,et al.  Computing irreducible representations of supersolvable groups , 1994 .

[6]  Kyriakos Kalorkoti ALGEBRAIC COMPLEXITY THEORY (Grundlehren der Mathematischen Wissenschaften 315) , 1999 .

[7]  Ulrich Baum,et al.  Existence and efficient construction of fast Fourier transforms on supersolvable groups , 1991, computational complexity.

[8]  Michael Clausen,et al.  Algebraic complexity theory , 1997, Grundlehren der mathematischen Wissenschaften.

[9]  Thomas Beth,et al.  On the Computational Complexity of the General Discrete Fourier Transform , 1987, Theor. Comput. Sci..

[10]  Wilhelm Plesken,et al.  Towards a Soluble Quotient Algorithm , 1987, J. Symb. Comput..

[11]  Volker Strassen,et al.  Algebraic Complexity Theory , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[12]  변재웅 Efficient computation of the fourier transform on the finite groups , 2000 .

[13]  Markus Püschel,et al.  Decomposing Monomial Representations of Solvable Groups , 2002, J. Symb. Comput..

[14]  P. Diaconis,et al.  Efficient computation of the Fourier transform on finite groups , 1990 .

[15]  V. Strassen Gaussian elimination is not optimal , 1969 .