CPT-Symmetric Universe.

We propose that the state of the Universe does not spontaneously violate CPT. Instead, the Universe after the big bang is the CPT image of the Universe before it, both classically and quantum mechanically. The pre- and postbang epochs comprise a universe-antiuniverse pair, emerging from nothing directly into a hot, radiation-dominated era. CPT symmetry selects a unique QFT vacuum state on such a spacetime, providing a new interpretation of the cosmological baryon asymmetry, as well as a remarkably economical explanation for the cosmological dark matter. Requiring only the standard three-generation model of particle physics (with right-handed neutrinos), a Z_{2} symmetry suffices to render one of the right-handed neutrinos stable. We calculate its abundance from first principles: matching the observed dark matter density requires its mass to be 4.8×10^{8}  GeV. Several other testable predictions follow: (i) the three light neutrinos are Majorana particles and allow neutrinoless double β decay; (ii) the lightest neutrino is massless; and (iii) there are no primordial long-wavelength gravitational waves. We mention connections to the strong CP problem and the arrow of time.

[1]  N. Turok,et al.  No rescue for the no boundary proposal: Pointers to the future of quantum cosmology , 2017, 1708.05104.

[2]  G. Fuller,et al.  New Dark Matter Candidate: Nonthermal Sterile Neutrinos , 1998, astro-ph/9810076.

[3]  S. Goldstein,et al.  Is the Hypothesis About a Low Entropy Initial State of the Universe Necessary for Explaining the Arrow of Time , 2016, 1602.05601.

[4]  N. Turok,et al.  Perfect Quantum Cosmological Bounce. , 2015, Physical review letters.

[5]  H. Kodama,et al.  Cosmological Perturbation Theory , 1984 .

[6]  A. Salam,et al.  Erratum: Lepton number as the fourth "color" , 1975 .

[7]  M. Shaposhnikov,et al.  Dark Matter, Baryogenesis and Neutrino Oscillations from Right Handed Neutrinos , 2012, 1208.4607.

[8]  A. Boyarsky,et al.  The Role of Sterile Neutrinos in Cosmology and Astrophysics , 2008, 0901.0011.

[9]  J. Barbour,et al.  Identification of a gravitational arrow of time. , 2014, Physical review letters.

[10]  A. Salam,et al.  Lepton Number as the Fourth Color , 1974 .

[11]  C. A. Oxborrow,et al.  Planck2015 results , 2015, Astronomy & Astrophysics.

[12]  T. Yanagida,et al.  Leptogenesis as the origin of matter , 2005, hep-ph/0502169.

[13]  K. Abazajian,et al.  Constraints on sterile neutrino dark matter , 2006, astro-ph/0605271.

[14]  Kaplan,et al.  Current-mass ratios of the light quarks. , 1986, Physical review letters.

[15]  R. Wald Quantum gravity and time reversibility , 1980 .

[16]  L. Anchordoqui,et al.  Upgoing ANITA events as evidence of the CPT symmetric universe , 2018, 1803.11554.

[17]  G. Degrassi,et al.  Higgs mass and vacuum stability in the Standard Model at NNLO , 2012, 1205.6497.

[18]  A. Melchiorri,et al.  Cosmological and astrophysical neutrino mass measurements , 2011, 1103.5083.

[19]  N. D. Birrell,et al.  Quantum fields in curved space , 2007 .

[20]  M. Fukugita,et al.  Baryogenesis without grand unification , 1986 .

[21]  S. Gratton,et al.  Inflation without a beginning: A Null boundary proposal , 2003, gr-qc/0301042.

[22]  B. Kniehl,et al.  Stability of the Electroweak Vacuum: Gauge Independence and Advanced Precision. , 2015, Physical review letters.

[23]  Alessandro Strumia,et al.  Investigating the near-criticality of the Higgs boson , 2013, 1307.3536.

[24]  Sterile neutrinos as dark matter. , 1993, Physical review letters.

[25]  Mikhail Shaposhnikov,et al.  Asymptotic safety of gravity and the Higgs-boson mass , 2009, 0912.0208.

[26]  Innern von ausgedehuteu,et al.  Wissenschaftliche Abhandlungen , 2017 .

[27]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[28]  J. Lacki,et al.  La signification du temps propre en mécanique ondulatoire [53] , 2009 .

[29]  Hume A. Feldman,et al.  Theory of cosmological perturbations , 1992 .

[30]  N. Turok,et al.  Quantum propagation across cosmological singularities , 2016, 1612.02792.

[31]  M. Sorel,et al.  The Search for neutrinoless double beta decay , 2011, 1109.5515.