A Novel Method to Estimate IP Traffic Matrix

Traffic flow is not only short-range dependence shown in traditional models, but also self-similarity and long-range dependence. The coexistence of these made it hard to estimate traffic matrix (TM) by using the modules based on temporal dimension. This paper avoids to establishing models for TM. Using the TM's spatial self-similarity, we expressed TM as a weighted linear combination of the sample OD flows. Compared with previous methods, our method does not only hold the lower estimation errors but also is more robust.

[1]  B. Yu,et al.  Time-varying network tomography: router link data , 2000, 2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060).

[2]  Kavé Salamatian,et al.  Traffic matrix tracking using Kalman filters , 2005, PERV.

[3]  Michael A. West,et al.  Bayesian Inference on Network Traffic Using Link Count Data , 1998 .

[4]  Albert G. Greenberg,et al.  Fast accurate computation of large-scale IP traffic matrices from link loads , 2003, SIGMETRICS '03.

[5]  Amarnath Mukherjee,et al.  On Long-Range Dependence in NSFNET Traffic , 1994 .

[6]  Vijay Erramilli,et al.  An independent-connection model for traffic matrices , 2006, IMC '06.

[7]  Sally Floyd,et al.  Wide area traffic: the failure of Poisson modeling , 1995, TNET.

[8]  Dingde Jiang,et al.  GARCH model-based large-scale IP traffic matrix estimation , 2009, IEEE Communications Letters.

[9]  Konstantina Papagiannaki,et al.  Structural analysis of network traffic flows , 2004, SIGMETRICS '04/Performance '04.

[10]  Mark E. Crovella,et al.  Effect of traffic self-similarity on network performance , 1997, Other Conferences.

[11]  Konstantina Papagiannaki,et al.  Long-term forecasting of Internet backbone traffic: observations and initial models , 2003, IEEE INFOCOM 2003. Twenty-second Annual Joint Conference of the IEEE Computer and Communications Societies (IEEE Cat. No.03CH37428).

[12]  Moshe Ben-Akiva,et al.  Discrete Choice Analysis: Theory and Application to Travel Demand , 1985 .

[13]  Konstantina Papagiannaki,et al.  Long-term forecasting of Internet backbone traffic , 2005, IEEE Transactions on Neural Networks.

[14]  Alan J. Mayne,et al.  Generalized Inverse of Matrices and its Applications , 1972 .

[15]  Carsten Lund,et al.  Estimating point-to-point and point-to-multipoint traffic matrices: an information-theoretic approach , 2005, IEEE/ACM Transactions on Networking.

[16]  Bing Yu,et al.  Time-Varying Network Tomography: Router Link Data , 2000 .

[17]  K. S. Banerjee Generalized Inverse of Matrices and Its Applications , 1973 .

[18]  Sally Floyd,et al.  Wide-area traffic: the failure of Poisson modeling , 1994 .

[19]  Christophe Diot,et al.  Traffic matrix estimation: existing techniques and new directions , 2002, SIGCOMM 2002.

[20]  Konstantina Papagiannaki,et al.  Traffic matrices: balancing measurements, inference and modeling , 2005, SIGMETRICS '05.

[21]  Christophe Diot,et al.  Design of IGP link weight changes for estimation of traffic matrices , 2004, IEEE INFOCOM 2004.

[22]  Y. Vardi,et al.  Network Tomography: Estimating Source-Destination Traffic Intensities from Link Data , 1996 .

[23]  Carsten Lund,et al.  An information-theoretic approach to traffic matrix estimation , 2003, SIGCOMM '03.