Analytical Modeling of the Mechanics of Nucleation and Growth of Cracks

With the traditional fracture mechanics approaches, an initial crack and self-similar progression of cracks are assumed. In this treatise, theoretical and numerical tools are developed to mathematically describe non-self-similar progression of cracks without specifying an initial crack. A cohesive-decohesive zone model, similar to the cohesive zone model known in fracture mechanics as Dugdale-Barenblatt model, is adopted to represent the degradation of the material ahead of the crack tip. This model unifies strength-based crack initiation and fracturebased crack progression. The cohesive-decohesive zone model is implemented with an interfacial surface material that consists of an upper and lower surface connected by a continuous distribution of normal and tangential nonlinear elastic springs that act to resist either Mode I opening, Mode II sliding, Mode III sliding, or mixed mode. The initiation of fracture is determined by the interfacial strength and the progression of fracture is determined by the critical energy release rate. The material between two adjacent laminae of a laminated composite structure or the material between the adherend and the adhesive is idealized with an interfacial surface material to predict interfacial fracture. The interfacial surface material is positioned within the bulk material to predict discrete cohesive cracks. The proper work-conjugacy relations between the stress and deformation measures are identified for the interfacial surface theory. In the principle of virtual work, the interfacial cohesive-decohesive tractions are conjugate to the displacement jumps across the upper and lower surfaces. A finite deformation kinematics theory is developed for the description of the upper and lower surface such that the deformation measures are invariant with respect to superposed rigid body translation and rotation. Various mechanical softening constitutive laws thermodynamically consistent with damage mechanics are postulated that relate the interfacial tractions to the displacement jump. An

[1]  Giulio Alfano,et al.  An interface element formulation for the simulation of delamination with buckling , 2001 .

[2]  Michael Ortiz,et al.  A cohesive model of fatigue crack growth , 2001 .

[3]  M. D. Thouless,et al.  Elastic–plastic mode-II fracture of adhesive joints , 2001 .

[4]  Sunil Saigal,et al.  Interfacial failures in a compressive shear strength test of glass/polymer laminates , 2000 .

[5]  Krueger Ronald,et al.  A Shell/3D Modeling Technique for the Analysis of Delaminated Composite Laminates , 2000 .

[6]  P.M.S.T. de Castro,et al.  Interface element including point‐to‐surface constraints for three‐dimensional problems with damage propagation , 2000 .

[7]  Alan Needleman,et al.  An analysis of intersonic crack growth under shear loading , 1999 .

[8]  Sunil Saigal,et al.  Polymer interfacial fracture simulations using cohesive elements , 1999 .

[9]  F. L. Matthews,et al.  Predicting Progressive Delamination of Composite Material Specimens via Interface Elements , 1999 .

[10]  Alberto Corigliano,et al.  Geometrical and interfacial non-linearities in the analysis of delamination in composites , 1999 .

[11]  F. L. Matthews,et al.  Delamination Onset Prediction in Mechanically Fastened Joints in Composite Laminates , 1999 .

[12]  W Hilburger Mark,et al.  Buckling Behavior of Compression-Loaded Quasi-Isotropic Curved Panels With a Circular Cutout , 1999 .

[13]  R Ambur Damodar,et al.  Analytical Prediction of Damage Growth in Notched Composite Panels Loaded in Axial Compression , 1999 .

[14]  M. Ortiz,et al.  FINITE-DEFORMATION IRREVERSIBLE COHESIVE ELEMENTS FOR THREE-DIMENSIONAL CRACK-PROPAGATION ANALYSIS , 1999 .

[15]  Horacio Dante Espinosa,et al.  A finite deformation continuum\discrete model for the description of fragmentation and damage in brittle materials , 1998 .

[16]  M. A. Crisfield,et al.  Progressive Delamination Using Interface Elements , 1998 .

[17]  D. Owen,et al.  A combined finite/discrete element algorithm for delamination analysis of composites , 1998 .

[18]  M. A. Crisfield,et al.  A new arc-length method for handling sharp snap-backs , 1998 .

[19]  A. T. Marques,et al.  Modeling Compression Failure after Low Velocity Impact on Laminated Composites Using Interface Elements , 1997 .

[20]  Jian Li,et al.  Evaluation of the Edge Crack Torsion (ECT) Test for Mode III Interlaminar Fracture Toughness of Laminated Composites , 1997 .

[21]  Eduardo Moas,et al.  Progressive Failure Analysis of Laminated Composite Structures , 1997 .

[22]  Naveen Rastogi,et al.  Stress analysis codes for bonded joints in composite structures , 1997 .

[23]  Anthony M. Waas,et al.  Non–self–similar decohesion along a finite interface of unilaterally constrained delaminations , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[24]  Constantinos Soutis,et al.  Interlaminar stresses in composite laminates with a circular hole , 1997 .

[25]  F. J. Mello,et al.  Modeling the Initiation and Growth of Delaminations in Composite Structures , 1996 .

[26]  Xiaopeng Xu,et al.  Numerical simulations of dynamic crack growth along an interface , 1996 .

[27]  Xiaopeng Xu,et al.  Numerical simulations of dynamic interfacial crack growth allowing for crack growth away from the bond line , 1996 .

[28]  F. Javidrad,et al.  A finite element model for delamination propagation in composites , 1996 .

[29]  Viggo Tvergaard,et al.  On the toughness of ductile adhesive joints , 1996 .

[30]  X. Kong,et al.  Effect of triaxial stress on mixed-mode fracture , 1995 .

[31]  P. Lagacé,et al.  On the prediction of delamination initiation , 1993 .

[32]  Shaw-Ming Lee An Edge Crack Torsion Method for Mode III Delamination Fracture Testing , 1993 .

[33]  Michael R Wisnom,et al.  A combined stress-based and fracture-mechanics-based model for predicting delamination in composites , 1993 .

[34]  J. Hutchinson,et al.  The influence of plasticity on mixed mode interface toughness , 1993 .

[35]  P. Robinson,et al.  A Modified DCB Specimen for Mode I Testing of Multidirectional Laminates , 1992 .

[36]  J. Hutchinson,et al.  The relation between crack growth resistance and fracture process parameters in elastic-plastic solids , 1992 .

[37]  W. Cui,et al.  A comparison of failure criteria to predict delamination of unidirectional glass/epoxy specimens waisted through the thickness , 1992 .

[38]  C. Dávila,et al.  Analysis for delamination initiation in postbuckled dropped-ply laminates , 1992 .

[39]  Fu-Kuo Chang,et al.  Damage Tolerance of Laminated Composites Containing an Open Hole and Subjected to Tensile Loadings , 1991 .

[40]  Jan G. Rots,et al.  Occurrence of spurious mechanisms in computations of strain‐softening solids , 1989 .

[41]  John C. Brewer,et al.  Quadratic Stress Criterion for Initiation of Delamination , 1988 .

[42]  A. Rosakis,et al.  A Finite Element Study of Stable Crack Growth Under Plane Stress Conditions: Part II—Influence of Hardening , 1987 .

[43]  A. Needleman A Continuum Model for Void Nucleation by Inclusion Debonding , 1987 .

[44]  F. Chang,et al.  A Progressive Damage Model for Laminated Composites Containing Stress Concentrations , 1987 .

[45]  G. Bfer,et al.  An isoparametric joint/interface element for finite element analysis , 1985 .

[46]  John D. Whitcomb,et al.  Analysis of instability-related growth of a through-width delamination , 1984 .

[47]  Ran Y. Kim,et al.  Experimental and Analytical Studies On the Onset of Delamination in Laminated Composites , 1984 .

[48]  Su Su Wang,et al.  Fracture Mechanics for Delamination Problems in Composite Materials , 1983 .

[49]  Su-Su Wang An analysis of delamination in angle-ply fiber-reinforced composites , 1980 .

[50]  John R. Rice,et al.  Mechanics of quasi-static crack growth , 1978 .

[51]  A. Hillerborg,et al.  Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements , 1976 .

[52]  Richard Schapery,et al.  A theory of crack initiation and growth in viscoelastic media , 1975 .

[53]  J. J. Moré,et al.  Quasi-Newton Methods, Motivation and Theory , 1974 .

[54]  G. Sih Strain-energy-density factor applied to mixed mode crack problems , 1974 .

[55]  A. J. Carlsson,et al.  Influence of non-singular stress terms and specimen geometry on small-scale yielding at crack tips in elastic-plastic materials , 1973 .

[56]  E. Riks The Application of Newton's Method to the Problem of Elastic Stability , 1972 .

[57]  Petr Lukáš,et al.  Influence of strength and stress history on growth and stabilisation of fatigue cracks , 1972 .

[58]  O. E. Wheeler Spectrum Loading and Crack Growth , 1972 .

[59]  G. Wempner Discrete approximations related to nonlinear theories of solids , 1971 .

[60]  K. Wang,et al.  Stress singularities at interface corners in bonded dissimilar isotropic elastic materials , 1971 .

[61]  N. J. Pagano,et al.  The Influence of Stacking Sequence on Laminate Strength , 1971 .

[62]  W. Knauss Delayed failure — the Griffith problem for linearly viscoelastic materials , 1970 .

[63]  E. G. Richard,et al.  A model for the mechanics of jointed rock , 1968 .

[64]  R. Forman,et al.  Numerical Analysis of Crack Propagation in Cyclic-Loaded Structures , 1967 .

[65]  F. Erdogan,et al.  Stress Distribution in Bonded Dissimilar Materials With Cracks , 1965 .

[66]  A. H. England A Crack Between Dissimilar Media , 1965 .

[67]  E. M. Wu,et al.  CRACK EXTENSION IN FIBERGLASS REINFORCED PLASTICS , 1965 .

[68]  P. C. Paris,et al.  A Critical Analysis of Crack Propagation Laws , 1963 .

[69]  D. S. Dugdale Yielding of steel sheets containing slits , 1960 .

[70]  P. Camanho,et al.  Progressive Damage Analyses of Skin/Stringer Debonding , 2004 .

[71]  A. Needlemana,et al.  Discrete dislocation modeling of fatigue crack propagation , 2002 .

[72]  P. Camanho,et al.  Decohesion Elements using Two and Three-Parameter Mixed-Mode Criteria , 2001 .

[73]  Luther N. Jenkins,et al.  Globalized Newton-krylov-schwarz Algorithms and Software for Parallel Implicit Cfd Globalized Newton-krylov-schwarz Algorithms and Software for Parallel Implicit Cfd * , 2022 .

[74]  Olivier Allix,et al.  Identification and forecast of delamination in composite laminates by an interlaminar interface model , 1998 .

[75]  Michael R Wisnom,et al.  Modelling the Effect of Cracks on Interlaminar Shear Strength , 1996 .

[76]  M. Benzeggagh,et al.  Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus , 1996 .

[77]  de R René Borst,et al.  Free edge delamination in carbon-epoxy laminates: a novel numerical/experimental approach , 1994 .

[78]  Xiaopeng Xu,et al.  Void nucleation by inclusion debonding in a crystal matrix , 1993 .

[79]  Z. Suo,et al.  Mixed mode cracking in layered materials , 1991 .

[80]  T. K. O'Brien,et al.  Composite materials: Fatigue and fracture. Vol. 3 , 1991 .

[81]  Marshall Rouse,et al.  Effect of cutouts or low-speed impact damage on the postbuckling behavior of composite plates loaded in shear , 1990 .

[82]  W. Knauss,et al.  Damage induced constitutive response of a thermoplastic related to composites and adhesive bonding , 1990 .

[83]  A.S.D. Wang,et al.  Fracture Analysis of Interlaminar Cracking , 1989 .

[84]  I. Raju,et al.  Convergence of strain energy release rate components for Edge-Delaminated composite laminates , 1988 .

[85]  David H. Allen,et al.  A thermomechanical constitutive theory for elastic composites with distributed damage—I. Theoretical development , 1987 .

[86]  C.M.L. Wu,et al.  Nonlinear analysis of edge effects in angle-ply laminates , 1987 .

[87]  Ramesh Talreja,et al.  Modeling of Damage Development in Composites Using Internal Variables Concepts , 1987 .

[88]  I. Raju Calculation of strain-energy release rates with higher order and singular finite elements , 1987 .

[89]  Shankar Mall,et al.  A fracture mechanics approach for designing adhesively bonded joints , 1985 .

[90]  T. O'Brien Characterization of delamination onset and growth in a composite laminate , 1982 .

[91]  M. Kanninen,et al.  A finite element calculation of stress intensity factors by a modified crack closure integral , 1977 .

[92]  J. Rice,et al.  Limitations to the small scale yielding approximation for crack tip plasticity , 1974 .

[93]  W. G. Knauss,et al.  On the Steady Propagation of a Crack in a Viscoelastic Sheet: Experiments and Analysis , 1973 .

[94]  P. Paris A rational analytic theory of fatigue , 1961 .