Minimum norm solution to the positive semidefinite linear complementarity problem

In this article, we present an algorithm to compute the minimum norm solution of the positive semidefinite linear complementarity problem. We show that its solution can be obtained using the alternative theorems and a convenient characterization of the solution set of a convex quadratic programming problem. This problem reduces to an unconstrained minimization problem with once differentiable convex objective function. We propose an extension of Newton's method for solving the unconstrained optimization problem. Computational results show that convergence to high accuracy often occurs in just a few iterations.

[1]  Steven Vajda,et al.  The Theory of Linear Economic Models , 1960 .

[2]  C. E. Lemke,et al.  Bimatrix Equilibrium Points and Mathematical Programming , 1965 .

[3]  H. Scarf,et al.  On The Applications of a Recent Combinatorial Algorithm , 1969 .

[4]  S. Karamardian,et al.  The complementarity problem , 1972, Math. Program..

[5]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[6]  J. Hiriart-Urruty,et al.  Generalized Hessian matrix and second-order optimality conditions for problems withC1,1 data , 1984 .

[7]  O. Mangasarian A simple characterization of solution sets of convex programs , 1988 .

[8]  Katta G. Murty,et al.  Linear complementarity, linear and nonlinear programming , 1988 .

[9]  J. B. Rosen,et al.  Global optimization approach to the linear complementarity problem , 1988 .

[10]  Y. Ye,et al.  Algorithms for the solution of quadratic knapsack problems , 1991 .

[11]  Y. Ye,et al.  A Class of Linear Complementarity Problems Solvable in Polynomial Time , 1991 .

[12]  P. Berman,et al.  Algorithms for the Least Distance Problem , 1993 .

[13]  J. Júdice Algorithms for Linear Complementarity Problems , 1994 .

[14]  A. I. Golikov,et al.  Theorems of the alternative and their applications in numerical methods , 2003 .

[15]  A. I. Golikov,et al.  New perspective on the theorems of alternative , 2003 .

[16]  C. Kanzow,et al.  On the Minimum Norm Solution of Linear Programs , 2003 .

[17]  O. Mangasarian A Newton Method for Linear Programming , 2004 .

[18]  Jong-Shi Pang,et al.  Linear Complementarity Systems: Zeno States , 2005, SIAM J. Control. Optim..

[19]  Katta G. Murty,et al.  Nonlinear Programming Theory and Algorithms , 2007, Technometrics.

[20]  Saeed Ketabchi,et al.  On the solution set of convex problems and its numerical application , 2007 .

[21]  Bart De Schutter,et al.  The Extended Linear Complementarity Problem and Its Applications in Analysis and Control of Discrete-Event Systems , 2008 .

[22]  Richard W. Cottle,et al.  Linear Complementarity Problem , 2009, Encyclopedia of Optimization.