On the Turing Model Complexity of Interior Point Methods for Semidefinite Programming

It is known that one can solve semidefinite programs to within fixed accuracy in polynomial time using the ellipsoid method (under some assumptions). In this paper it is shown that the same holds true when one uses the short-step, primal interior point method. The main idea of the proof is to employ Diophantine approximation at each iteration to bound the intermediate bit-sizes of iterates.

[1]  Ming Gu,et al.  Primal-Dual Interior-Point Methods for Semidefinite Programming in Finite Precision , 1999, SIAM J. Optim..

[2]  Bernd Grtner,et al.  Approximation Algorithms and Semidefinite Programming , 2012 .

[3]  James Renegar,et al.  A mathematical view of interior-point methods in convex optimization , 2001, MPS-SIAM series on optimization.

[4]  Alexander Schrijver,et al.  Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.

[5]  Narendra Karmarkar,et al.  A new polynomial-time algorithm for linear programming , 1984, Comb..

[6]  J. G. Pierce,et al.  Geometric Algorithms and Combinatorial Optimization , 2016 .

[7]  Alexander Schrijver,et al.  Reduction of symmetric semidefinite programs using the regular $$\ast$$-representation , 2007, Math. Program..

[8]  Jorge R. Vera Ill-posedness and finite precision arithmetic: a complexity analysis for interior point methods , 1997 .

[9]  Martin Grötschel,et al.  The ellipsoid method and its consequences in combinatorial optimization , 1981, Comb..

[10]  Michael J. Todd,et al.  Path-Following Methods , 2000 .

[11]  Frank Vallentin,et al.  High-Accuracy Semidefinite Programming Bounds for Kissing Numbers , 2009, Exp. Math..

[12]  F. Vallentin,et al.  Upper bounds for packings of spheres of several radii , 2012, Forum of Mathematics, Sigma.

[13]  Stephen J. Wright Primal-Dual Interior-Point Methods , 1997, Other Titles in Applied Mathematics.

[14]  Makoto Yamashita,et al.  Latest Developments in the SDPA Family for Solving Large-Scale SDPs , 2012 .

[15]  Alexander Schrijver,et al.  New code upper bounds from the Terwilliger algebra and semidefinite programming , 2005, IEEE Transactions on Information Theory.

[16]  David P. Williamson,et al.  Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.

[17]  Stephen J. Wright Effects of Finite-Precision Arithmetic on Interior-Point Methods for Nonlinear Programming , 2001, SIAM J. Optim..

[18]  Yurii Nesterov,et al.  Interior-point polynomial algorithms in convex programming , 1994, Siam studies in applied mathematics.