Fingerprint - Iris Fusion Based Identification System Using a Single Hamming Distance Matcher

Conventional multimodal biometric identification systems tend to have larger memory footprint, slower processing speeds and a higher implementation and operational cost. In this paper we propose a state of the art framework for multimodal biometric identification system which can be adapted for any type of biometrics to provide smaller memory footprint and faster implementation than the conventional multimodal biometrics systems. The proposed framework is verified by development of a fingerprint and iris fusion system which utilizes a single Hamming Distance based matcher to provide higher accuracy than the individual unimodal system.

[1]  Anil K. Jain,et al.  Multibiometric systems: fusion strategies and template security , 2008 .

[2]  Anil K. Jain,et al.  Combining multiple matchers for a high security fingerprint verification system , 1999, Pattern Recognit. Lett..

[3]  Josef Kittler,et al.  An Experimental Comparison of Classifier Fusion Rules for Multimodal Personal Identity Verification Systems , 2002, Multiple Classifier Systems.

[4]  Loris Nanni,et al.  Combining Multiple Matchers for Fingerprint Verification: A Case Study in FVC2004 , 2005, ICIAP.

[5]  Anil K. Jain,et al.  Quality-based Score Level Fusion in Multibiometric Systems , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[6]  Tieniu Tan,et al.  Combining Face and Iris Biometrics for Identity Verification , 2003, AVBPA.

[7]  Loris Nanni,et al.  When Fingerprints Are Combined with Iris - A Case Study: FVC2004 and CASIA , 2007, Int. J. Netw. Secur..

[8]  John Daugman,et al.  High Confidence Visual Recognition of Persons by a Test of Statistical Independence , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Venu Govindaraju,et al.  A chaincode based scheme for fingerprint feature extraction , 2006, Pattern Recognit. Lett..

[10]  Pauli Kuosmanen,et al.  New approach to automated fingerprint matching , 2001, IS&T/SPIE Electronic Imaging.

[11]  B. Achiriloaie,et al.  VI REFERENCES , 1961 .

[12]  Libor Masek,et al.  MATLAB Source Code for a Biometric Identification System Based on Iris Patterns , 2003 .

[13]  Venu Govindaraju,et al.  K-plet and Coupled BFS: A Graph Based Fingerprint Representation and Matching Algorithm , 2006, ICB.

[14]  Anil K. Jain,et al.  Decision-level fusion in fingerprint verification , 2001, Pattern Recognit..

[15]  Berk Gökberk,et al.  Rank-based decision fusion for 3D shape-based face recognition , 2005, SIU 2005.

[16]  Patrick J. Flynn,et al.  An evaluation of multimodal 2D+3D face biometrics , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[17]  Ahmed Bouridane,et al.  A corner strength based Fingerprint segmentation algorithm with dynamic thresholding , 2008, 2008 19th International Conference on Pattern Recognition.

[18]  Ping Yan,et al.  Multi-Modal Biometrics Involving the Human Ear , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[19]  L. Hong,et al.  Can multibiometrics improve performance , 1999 .