Differential Roles of Poly-N-Acetylglucosamine Surface Polysaccharide and Extracellular DNA in Staphylococcus aureus and Staphylococcus epidermidis Biofilms

ABSTRACT Staphylococcus aureus and Staphylococcus epidermidis are major human pathogens of increasing importance due to the dissemination of antibiotic-resistant strains. Evidence suggests that the ability to form matrix-encased biofilms contributes to the pathogenesis of S. aureus and S. epidermidis. In this study, we investigated the functions of two staphylococcal biofilm matrix polymers: poly-N-acetylglucosamine surface polysaccharide (PNAG) and extracellular DNA (ecDNA). We measured the ability of a PNAG-degrading enzyme (dispersin B) and DNase I to inhibit biofilm formation, detach preformed biofilms, and sensitize biofilms to killing by the cationic detergent cetylpyridinium chloride (CPC) in a 96-well microtiter plate assay. When added to growth medium, both dispersin B and DNase I inhibited biofilm formation by both S. aureus and S. epidermidis. Dispersin B detached preformed S. epidermidis biofilms but not S. aureus biofilms, whereas DNase I detached S. aureus biofilms but not S. epidermidis biofilms. Similarly, dispersin B sensitized S. epidermidis biofilms to CPC killing, whereas DNase I sensitized S. aureus biofilms to CPC killing. We concluded that PNAG and ecDNA play fundamentally different structural roles in S. aureus and S. epidermidis biofilms.

[1]  Roberto Kolter,et al.  Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis , 1998, Molecular microbiology.

[2]  D. Mack,et al.  The intercellular adhesin involved in biofilm accumulation of Staphylococcus epidermidis is a linear beta-1,6-linked glucosaminoglycan: purification and structural analysis , 1996, Journal of bacteriology.

[3]  D. Mack,et al.  Molecular basis of intercellular adhesion in the biofilm‐forming Staphylococcus epidermidis , 1996, Molecular microbiology.

[4]  J. Kaplan,et al.  Detachment and Killing of Aggregatibacter actinomycetemcomitans Biofilms by Dispersin B and SDS , 2007, Journal of dental research.

[5]  J. O’Gara ica and beyond: biofilm mechanisms and regulation in Staphylococcus epidermidis and Staphylococcus aureus. , 2007, FEMS microbiology letters.

[6]  Michael Otto,et al.  Polysaccharide intercellular adhesin (PIA) protects Staphylococcus epidermidis against major components of the human innate immune system , 2004, Cellular microbiology.

[7]  K. Rice,et al.  The cidA murein hydrolase regulator contributes to DNA release and biofilm development in Staphylococcus aureus , 2007, Proceedings of the National Academy of Sciences.

[8]  B. Farber,et al.  Staphylococcus epidermidis extracted slime inhibits the antimicrobial action of glycopeptide antibiotics. , 1990, The Journal of infectious diseases.

[9]  R. Novick Properties of a cryptic high-frequency transducing phage in Staphylococcus aureus. , 1967, Virology.

[10]  A. Conde Staphylococcus aureus infections. , 1998, The New England journal of medicine.

[11]  D. Goldmann,et al.  Poly-N-Acetylglucosamine Production in Staphylococcus aureus Is Essential for Virulence in Murine Models of Systemic Infection , 2005, Infection and Immunity.

[12]  L. Eckhart,et al.  DNase1L2 suppresses biofilm formation by Pseudomonas aeruginosa and Staphylococcus aureus , 2007, The British journal of dermatology.

[13]  S. Cramton,et al.  The Intercellular Adhesion (ica) Locus Is Present in Staphylococcus aureus and Is Required for Biofilm Formation , 1999, Infection and Immunity.

[14]  D. Mack,et al.  Parallel induction by glucose of adherence and a polysaccharide antigen specific for plastic-adherent Staphylococcus epidermidis: evidence for functional relation to intercellular adhesion , 1992, Infection and immunity.

[15]  J. Kaplan,et al.  Susceptibility of staphylococcal biofilms to enzymatic treatments depends on their chemical composition , 2007, Applied Microbiology and Biotechnology.

[16]  Jianjun Li,et al.  Structural elucidation of the extracellular and cell-wall teichoic acids of Staphylococcus aureus MN8m, a biofilm forming strain. , 2006, Carbohydrate research.

[17]  B. Neumeister,et al.  The ability of biofilm formation does not influence virulence of Staphylococcus aureus and host response in a mouse tissue cage infection model. , 2004, Microbial pathogenesis.

[18]  H. Akiyama,et al.  Staphylococcus aureus infection on cut wounds in the mouse skin: experimental staphylococcal botryomycosis. , 1996, Journal of dermatological science.

[19]  P. Varaldo,et al.  Glycopeptide Resistance in Coagulase-Negative Staphylococci , 2000, European Journal of Clinical Microbiology and Infectious Diseases.

[20]  Zhiqiang Qin,et al.  Role of autolysin-mediated DNA release in biofilm formation of Staphylococcus epidermidis. , 2007, Microbiology.

[21]  S. Hammer,et al.  Staphylococcus epidermidis infections. , 1983, Annals of internal medicine.

[22]  S. Foster,et al.  σB Modulates Virulence Determinant Expression and Stress Resistance: Characterization of a Functional rsbU Strain Derived from Staphylococcus aureus 8325-4 , 2002, Journal of bacteriology.

[23]  G. O’Toole,et al.  Heparin Stimulates Staphylococcus aureus Biofilm Formation , 2005, Infection and Immunity.

[24]  D. Stevens,et al.  Community-acquired Staphylococcus aureus infections: Increasing virulence and emerging methicillin resistance in the new millennium. , 2003, Current Opinion in Infectious Diseases.

[25]  M. Perry,et al.  Poly-N-acetylglucosamine mediates biofilm formation and detergent resistance in Aggregatibacter actinomycetemcomitans. , 2008, Microbial pathogenesis.

[26]  T. Romeo,et al.  Role of a Putative Polysaccharide Locus in Bordetella Biofilm Development , 2006, Journal of bacteriology.

[27]  D. Fine,et al.  Biofilm Dispersal of Neisseria subflava and Other Phylogenetically Diverse Oral Bacteria , 2002, Applied and Environmental Microbiology.

[28]  P. Fey,et al.  Characterization of Staphylococcus epidermidisPolysaccharide Intercellular Adhesin/Hemagglutinin in the Pathogenesis of Intravascular Catheter-Associated Infection in a Rat Model , 1999, Infection and Immunity.

[29]  D. Fine,et al.  Detachment of Actinobacillus actinomycetemcomitans Biofilm Cells by an Endogenous β-Hexosaminidase Activity , 2003, Journal of bacteriology.

[30]  B. J. Hinnebusch,et al.  Depolymerization of β-1,6-N-Acetyl-d-Glucosamine Disrupts the Integrity of Diverse Bacterial Biofilms , 2005, Journal of bacteriology.

[31]  Jianjun Li,et al.  Structural elucidation of the extracellular and cell-wall teichoic acids of Staphylococcus epidermidis RP62A, a reference biofilm-positive strain. , 2004, Carbohydrate research.

[32]  R. Deora,et al.  The Bordetella Bps Polysaccharide Is Critical for Biofilm Development in the Mouse Respiratory Tract , 2007, Journal of bacteriology.

[33]  B. Barrell,et al.  Complete genomes of two clinical Staphylococcus aureus strains: evidence for the rapid evolution of virulence and drug resistance. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[34]  J. Hacker,et al.  Detection of the intercellular adhesion gene cluster (ica) and phase variation in Staphylococcus epidermidis blood culture strains and mucosal isolates , 1997, Infection and immunity.

[35]  Robin Patel,et al.  icaA Is Not a Useful Diagnostic Marker for Prosthetic Joint Infection , 2004, Journal of Clinical Microbiology.

[36]  K. Agladze,et al.  Spatial Periodicity of Escherichia coli K-12 Biofilm Microstructure Initiates during a Reversible, Polar Attachment Phase of Development and Requires the Polysaccharide Adhesin PGA , 2005, Journal of bacteriology.

[37]  A. Peschel,et al.  Key Role of Teichoic Acid Net Charge inStaphylococcus aureus Colonization of Artificial Surfaces , 2001, Infection and Immunity.

[38]  H. Rohde,et al.  Polysaccharide intercellular adhesin or protein factors in biofilm accumulation of Staphylococcus epidermidis and Staphylococcus aureus isolated from prosthetic hip and knee joint infections. , 2007, Biomaterials.

[39]  F. Götz Staphylococcus and biofilms , 2002, Molecular microbiology.

[40]  P Stoodley,et al.  Survival strategies of infectious biofilms. , 2005, Trends in microbiology.

[41]  M. Smeltzer,et al.  Global Gene Expression in Staphylococcus aureus Biofilms , 2004, Journal of bacteriology.

[42]  G. Nicoletti,et al.  Presence of the ica operon in clinical isolates of Staphylococcus epidermidis and its role in biofilm production. , 2004, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[43]  J. I. Brauman Polymers , 1991, Science.

[44]  C. Solano,et al.  Bap, a Staphylococcus aureus Surface Protein Involved in Biofilm Formation , 2001, Journal of bacteriology.

[45]  J. Strominger,et al.  Composition of the cell wall of Staphylococcus aureus: its relation to the mechanism of action of penicillin. , 1959, The Journal of biological chemistry.

[46]  Mario Recker,et al.  Opinion: The evolution and maintenance of virulence in Staphylococcus aureus: a role for host-to-host transmission? , 2006, Nature Reviews Microbiology.

[47]  S. Aubert,et al.  Staphylococcus caprae Strains Carry Determinants Known To Be Involved in Pathogenicity: a Gene Encoding an Autolysin-Binding Fibronectin and the ica Operon Involved in Biofilm Formation , 2001, Infection and Immunity.

[48]  A. Hinton,et al.  In vivo glycocalyx expression by Staphylococcus aureus phage type 52/52A/80 in S. aureus osteomyelitis. , 1987, The Journal of infectious diseases.

[49]  H. Rohde,et al.  Genes Involved in the Synthesis and Degradation of Matrix Polysaccharide in Actinobacillus actinomycetemcomitans and Actinobacillus pleuropneumoniae Biofilms , 2004, Journal of bacteriology.

[50]  G. Peters,et al.  A 140-kilodalton extracellular protein is essential for the accumulation of Staphylococcus epidermidis strains on surfaces , 1997, Infection and immunity.

[51]  S. Kjelleberg,et al.  A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms , 2006, Molecular microbiology.

[52]  D. Fine,et al.  Enzymatic Detachment of Staphylococcus epidermidis Biofilms , 2004, Antimicrobial Agents and Chemotherapy.

[53]  M. Débarbouillé,et al.  Staphylococcus aureus Develops an Alternative, ica-Independent Biofilm in the Absence of the arlRS Two-Component System , 2005, Journal of bacteriology.

[54]  A. Holck,et al.  Biofilm Formation and the Presence of the Intercellular Adhesion Locus ica among Staphylococci from Food and Food Processing Environments , 2003, Applied and Environmental Microbiology.

[55]  A. Bisno,et al.  Adherence of slime-producing strains of Staphylococcus epidermidis to smooth surfaces , 1982, Infection and immunity.

[56]  M. Perry,et al.  Poly-N-acetylglucosamine mediates biofilm formation and antibiotic resistance in Actinobacillus pleuropneumoniae. , 2007, Microbial pathogenesis.

[57]  Robin Patel,et al.  Poly-N-Acetylglucosamine Is Not a Major Component of the Extracellular Matrix in Biofilms Formed by icaADBC-Positive Staphylococcus lugdunensis Isolates , 2007, Infection and Immunity.

[58]  K. Jansen,et al.  Isolation, structural characterization, and immunological evaluation of a high-molecular-weight exopolysaccharide from Staphylococcus aureus. , 2003, Carbohydrate research.

[59]  J. O’Gara,et al.  The genetics of staphylococcal biofilm formation--will a greater understanding of pathogenesis lead to better management of device-related infection? , 2005, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.