Principles of Surface-based Microwave and Millimeter wave Radiometric Remote Sensing of the Troposphere

Surface-based radiometric measurements of tropospheric parameters have long provided useful measurements of temperature, water vapor, and cloud liquid. In this paper, a general overview of physical fundamentals, measurement techniques, and retrieval methodology is given. Then several contemporary instruments are discussed and representative results are presented. Recent and promising developments include multifrequency radiometers, scanning observations of clouds, and combined activepassive remote sensing. The primary applications of these new technologies are weather forecasting and climate, communications, geodesy and long-baseline interferometry, satellite data validation, air-sea interaction, and fundamental molecular physics. The work presented here updates and extends the reviews published in [11] and [37].

[1]  Hans J. Liebe,et al.  Propagation Modeling of Moist Air and Suspended Water/Ice Particles at Frequencies Below 1000 GHz , 1993 .

[2]  Niels Skou,et al.  Microwave Radiometer Systems: Design and Analysis , 1989 .

[3]  Matthias Drusch,et al.  Cloud observations and modeling within the European BALTEX cloud liquid water network , 2002 .

[4]  ÜRGEN,et al.  Temperature and humidity profile retrievals from ground-based microwave radiometers during TUC , 2006 .

[5]  Vinia Mattioli,et al.  Forward model studies of water vapor using scanning microwave radiometers, global positioning system, and radiosondes during the cloudiness intercomparison experiment , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[6]  Alan Tanner,et al.  Design and performance of a high‐stability water vapor radiometer , 2003 .

[7]  M. Politovich,et al.  Moisture Profiling of the Cloudy Winter Atmosphere Using Combined Remote Sensors , 1995 .

[8]  S. Crewell,et al.  A review of surface-based microwave and millimeter-wave radiometric remote sensing of the troposphere , 2004, URSI Radio Science Bulletin.

[9]  Yong Han,et al.  Analysis and improvement of tipping calibration for ground-based microwave radiometers , 2000, IEEE Trans. Geosci. Remote. Sens..

[10]  A.H. Haddad,et al.  Applied optimal estimation , 1976, Proceedings of the IEEE.

[11]  Beat Schmid,et al.  Modeled and empirical approaches for retrieving columnar water vapor from solar transmittance measurements in the 0.72, 0.82, and 0.94 μm absorption bands , 2000 .

[12]  Christian Mätzler,et al.  Tropospheric water and temperature retrieval for ASMUWARA , 2006 .

[13]  V. Oinas,et al.  Atmospheric Radiation , 1963, Nature.

[14]  P. Rosenkranz Water vapor microwave continuum absorption: A comparison of measurements and models , 1998 .

[15]  M. Shupe,et al.  Analysis of Integrated Cloud Liquid and Precipitable Water Vapor Retrievals from the ARM Microwave Radiometer During SHEBA , 2001 .

[16]  V. V. Parshin,et al.  Studies of 183 GHz water line: broadening and shifting by air, N2 and O2 and integral intensity measurements , 2003 .

[17]  Shepard A. Clough,et al.  Atmospheric radiative transfer modeling: a summary of the AER codes , 2005 .

[18]  S. Clough,et al.  Dry Bias and Variability in Vaisala RS80-H Radiosondes: The ARM Experience , 2003 .

[19]  F. Agterberg Introduction to Mathematics of Inversion in Remote Sensing and Indirect Measurements , 1979 .

[20]  Niklaus Kämpfer,et al.  Weighted mean tropospheric temperature and transmittance determination at millimeter‐wave frequencies for ground‐based applications , 1998 .

[21]  P. Barber Absorption and scattering of light by small particles , 1984 .

[22]  Christian Mätzler,et al.  Ground-based observations of atmospheric radiation at 5, 10, 21, 35, and 94 GHz , 1992 .

[23]  D. A. Merritt,et al.  An Automatic Profiler of the Temperature, Wind and Humidity in the Troposphere. , 1983 .

[24]  Artin,et al.  Intercomparison of integrated water vapour measurements , 2005 .

[25]  Richard K. Moore,et al.  Microwave Remote Sensing - Active and Passive - Volume I - Microwave Remote Sensing Fundamentals and Radiometry , 1981 .

[26]  John Derber,et al.  The Use of TOVS Cloud-Cleared Radiances in the NCEP SSI Analysis System , 1998 .

[27]  Yuri G. Trokhimovski,et al.  Air and sea surface temperature measurements using a 60-GHz microwave rotating radiometer , 1998, IEEE Trans. Geosci. Remote. Sens..

[28]  Ed R. Westwater,et al.  Surface-based Microwave and Millimeter wave Radiometric Remote Sensing of the Troposphere : a Tutorial , 2005 .

[29]  S. Schwartz,et al.  The Atmospheric Radiation Measurement (ARM) Program: Programmatic Background and Design of the Cloud and Radiation Test Bed , 1994 .

[30]  Edward J. Kim,et al.  Measurement of Low Amounts of Precipitable Water Vapor Using Ground-Based Millimeterwave Radiometry , 2005 .

[31]  Tim J. Hewison,et al.  Measuring the Accuracy of MARSS—An Airborne Microwave Radiometer , 2001 .

[32]  D. Deirmendjian Electromagnetic scattering on spherical polydispersions , 1969 .

[33]  John Derber,et al.  Applications of satellite remote sensing in numerical weather and climate prediction , 2002 .

[34]  Gang Li,et al.  The HITRAN 2008 molecular spectroscopic database , 2005 .

[35]  E. E. Gossard,et al.  Use of Wind Profiler Estimates of Significant Moisture Gradients to Improve Humidity Profile Retrieval , 1996 .

[36]  E. N. Kadygrov,et al.  Remote sensing of boundary-layer temperature profiles by a scanning 5-mm microwave radiometer and RASS: a comparison experiment , 1997, IGARSS'97. 1997 IEEE International Geoscience and Remote Sensing Symposium Proceedings. Remote Sensing - A Scientific Vision for Sustainable Development.

[37]  Van Vleck,et al.  The Absorption of Microwaves by Uncondensed Water Vapor , 1947 .

[38]  G. Hufford,et al.  A model for the complex permittivity of ice at frequencies below 1 THz , 1991 .

[39]  Clemens Simmer,et al.  Profiling Cloud Liquid Water by Combining Active and Passive Microwave Measurements with Cloud Model Statistics , 2001 .

[40]  Gerald M. Stokes,et al.  The Atmospheric Radiation Measurement Program , 2003 .

[41]  P. Rosenkranz,et al.  Absorption of Microwaves by Atmospheric Gases , 1993 .

[42]  ASMUWARA - The All-Sky Multi Wavelength Radiometer: Documentation , 2002 .

[43]  J. B. Snider,et al.  Experimental Determination of Temperature Profiles by Ground-Based Microwave Radiometry , 1975 .

[44]  D. Staelin,et al.  An Extended Kalman-Bucy Filter for Atmospheric Temperature Profile Retrieval with a Passive Microwave Sounder , 1978 .

[45]  R. Reynolds,et al.  Bulletin of the American Meteorological Society , 1996 .

[46]  Domenico Cimini,et al.  Validating clear air absorption models using ground-based microwave radiometers and vice-versa , 2006 .

[47]  J. V. Vleck,et al.  On the Shape of Collision-Broadened Lines , 1945 .

[48]  Richard A. Brown,et al.  Introduction to random signals and applied kalman filtering (3rd ed , 2012 .

[49]  E. Clothiaux,et al.  Objective Determination of Cloud Heights and Radar Reflectivities Using a Combination of Active Remote Sensors at the ARM CART Sites , 2000 .

[50]  M. Janssen Atmospheric Remote Sensing by Microwave Radiometry , 1993 .

[51]  James H. Churnside,et al.  Temperature Profiling with Neural Network Inversion of Microwave Radiometer Data , 1994 .

[52]  Yong Han,et al.  Accuracy of ground-based microwave radiometer and balloon-borne measurements during the WVIOP2000 field experiment , 2003, IEEE Trans. Geosci. Remote. Sens..

[53]  Ed R. Westwater,et al.  Radiometric profiling of temperature, water vapor and cloud liquid water using various inversion methods , 1998 .

[54]  Domenico Cimini,et al.  Radiosonde Humidity Soundings and Microwave Radiometers during Nauru99 , 2003 .

[55]  Artin,et al.  Comparison of brightness temperatures observed from ground-based microwave radiometers during TUC , 2006 .

[56]  Richard K. Moore,et al.  Microwave Remote Sensing, Active and Passive , 1982 .

[57]  Mark D. Jacobson,et al.  Design and performance of a spinning flat reflector for millimeter-wave radiometry , 1997, IEEE Trans. Geosci. Remote. Sens..

[58]  Christian Mätzler,et al.  Microwave Properties of Ice and Snow , 1998 .

[59]  J. Güldner,et al.  Remote Sensing of the Thermodynamic State of the Atmospheric Boundary Layer by Ground-Based Microwave Radiometry , 2001 .

[60]  Fabio Del Frate,et al.  A combined natural orthogonal functions/neural network technique for the radiometric estimation of atmospheric profiles , 1998 .

[61]  Clemens Simmer,et al.  Microwave Radiometer for Cloud Carthography: A 22-channel ground-based microwave radiometer for atmospheric research , 2001 .

[62]  Albin J. Gasiewski,et al.  Nadir sensitivity of passive millimeter and submillimeter wave channels to clear air temperature and water vapor variations , 2000 .

[63]  Yong Han,et al.  Remote Sensing of Tropospheric Water Vapor and Cloud Liquid Water by Integrated Ground-Based Sensors , 1995 .

[64]  C. Rodgers,et al.  Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation , 1976 .

[65]  J. A. Gualtieri,et al.  Comparison of neural networks and regression-based methods for temperature retrievals. , 1995, Applied optics.

[66]  Roy Rasmussen,et al.  Winter Icing and Storms Project (WISP). , 1992 .

[67]  Hans J. Liebe,et al.  Millimeter-wave properties of the atmosphere: Laboratory studies and propagation modeling , 1987 .

[68]  Arc,et al.  Characterization of low clouds with satellite and ground-based remote sensing systems , 2006 .

[69]  J. C. Liljegren,et al.  A multichannel radiometric profiler of temperature, humidity, and cloud liquid , 2003 .

[70]  James H. Churnside,et al.  Air temperature profile and air/sea temperature difference measurements by infrared and microwave scanning radiometers , 2003 .

[71]  E. Westwater Ground-based passive probing using the microwave spectrum of oxygen , 1965 .

[72]  C. Tropea,et al.  Light Scattering from Small Particles , 2003 .

[73]  Shepard A. Clough,et al.  The effect of the half-width of the 22-GHz water vapor line on retrievals of temperature and water vapor profiles with a 12-channel microwave radiometer , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[74]  E. Grant,et al.  Dielectric Behavior of Water at Microwave Frequencies , 1957 .

[75]  N. Kämpfer,et al.  Radiometric determination of water vapor and liquid water and its validation with other techniques , 1992 .

[76]  T. Manabe,et al.  A model for the complex permittivity of water at frequencies below 1 THz , 1991 .

[77]  Jan Askne,et al.  A Review of Ground-Based Remote Sensing of Temperature and Moisture by Passive Microwave Radiometers , 1986, IEEE Transactions on Geoscience and Remote Sensing.

[78]  Christian Mätzler,et al.  ASMUWARA, a ground-based radiometer system for tropospheric monitoring , 2006 .

[79]  Frank S. Marzano,et al.  Modeling and measurement of rainfall by ground-based multispectral microwave radiometry , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[80]  Susanne Crewell,et al.  Accuracy of cloud liquid water path from ground‐based microwave radiometry 2. Sensor accuracy and synergy , 2003 .

[81]  Parag A. Pathak,et al.  Massachusetts Institute of Technology , 1964, Nature.

[82]  The retrieval of temperature profiles with the ground based radiometer system ASMUWARA , 2003 .

[83]  Vinia Mattioli,et al.  Initial results from the 2004 North Slope of Alaska Arctic winter radiometric experiment , 2004, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium.

[84]  Hans J. Liebe,et al.  MPM—An atmospheric millimeter-wave propagation model , 1989 .

[85]  J. H. Van Vleck,et al.  The Absorption of Microwaves by Oxygen , 1947 .

[86]  M. Yu. Tretyakova,et al.  60-GHz oxygen band : precise broadening and central frequencies of fine-structure lines , absolute absorption profile at atmospheric pressure , and revision of mixing coefficients , 2005 .