An Efficient Hybrid Conjugate Gradient Method for Unconstrained Optimization

Recently, we propose a nonlinear conjugate gradient method, which produces a descent search direction at every iteration and converges globally provided that the line search satisfies the weak Wolfe conditions. In this paper, we will study methods related to the new nonlinear conjugate gradient method. Specifically, if the size of the scalar βk with respect to the one in the new method belongs to some interval, then the corresponding methods are proved to be globally convergent; otherwise, we are able to construct a convex quadratic example showing that the methods need not converge. Numerical experiments are made for two combinations of the new method and the Hestenes–Stiefel conjugate gradient method. The initial results show that, one of the hybrid methods is especially efficient for the given test problems.

[1]  C. Storey,et al.  Global convergence result for conjugate gradient methods , 1991 .

[2]  Yu-Hong Dai New properties of a nonlinear conjugate gradient method , 2001, Numerische Mathematik.

[3]  Jorge Nocedal,et al.  Global Convergence Properties of Conjugate Gradient Methods for Optimization , 1992, SIAM J. Optim..

[4]  K. Schittkowski,et al.  NONLINEAR PROGRAMMING , 2022 .

[5]  Boris Polyak The conjugate gradient method in extremal problems , 1969 .

[6]  T. M. Williams,et al.  Practical Methods of Optimization. Vol. 1: Unconstrained Optimization , 1980 .

[7]  P. Wolfe Convergence Conditions for Ascent Methods. II: Some Corrections , 1971 .

[8]  Ya-Xiang Yuan,et al.  Convergence properties of the Fletcher-Reeves method , 1996 .

[9]  Ya-Xiang Yuan,et al.  A Nonlinear Conjugate Gradient Method with a Strong Global Convergence Property , 1999, SIAM J. Optim..

[10]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[11]  C. M. Reeves,et al.  Function minimization by conjugate gradients , 1964, Comput. J..

[12]  Jorge J. Moré,et al.  Testing Unconstrained Optimization Software , 1981, TOMS.

[13]  D. Touati-Ahmed,et al.  Efficient hybrid conjugate gradient techniques , 1990 .

[14]  Yu-Hong Dai,et al.  Some Properties of A New Conjugate Gradient Method , 1998 .

[15]  M. Powell Nonconvex minimization calculations and the conjugate gradient method , 1984 .

[16]  M. J. D. Powell,et al.  Restart procedures for the conjugate gradient method , 1977, Math. Program..

[17]  M. Al-Baali Descent Property and Global Convergence of the Fletcher—Reeves Method with Inexact Line Search , 1985 .

[18]  P. Wolfe Convergence Conditions for Ascent Methods. II , 1969 .

[19]  E. Polak,et al.  Note sur la convergence de méthodes de directions conjuguées , 1969 .

[20]  Liu Guanghui,et al.  Global convergence of the fletcher-reeves algorithm with inexact linesearch , 1995 .

[21]  R. Fletcher Practical Methods of Optimization , 1988 .

[22]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .