A deep convolutional neural network model for automated identification of abnormal EEG signals

Electroencephalogram (EEG) is widely used to monitor the brain activities. The manual examination of these signals by experts is strenuous and time consuming. Hence, machine learning techniques can be used to improve the accuracy of detection. Nowadays, deep learning methodologies have been used in medical field to diagnose the health conditions precisely and aid the clinicians. In this study, a new deep one-dimensional convolutional neural network (1D CNN) model is proposed for the automatic recognition of normal and abnormal EEG signals. The proposed model is a complete end-to-end structure which classifies the EEG signals without requiring any feature extraction. In this study, we have used the EEG signals from temporal to occipital (T5–O1) single channel obtained from Temple University Hospital EEG Abnormal Corpus (v2.0.0) EEG dataset to develop the 1D CNN model. Our developed model has yielded the classification error rate of 20.66% in classifying the normal and abnormal EEG signals.

[1]  S. Smith EEG in the diagnosis, classification, and management of patients with epilepsy , 2005, Journal of Neurology, Neurosurgery & Psychiatry.

[2]  U. Rajendra Acharya,et al.  Characterization of focal EEG signals: A review , 2019, Future Gener. Comput. Syst..

[3]  H. Adeli,et al.  Fractality and a Wavelet-chaos-Methodology for EEG-based Diagnosis of Alzheimer Disease , 2011, Alzheimer disease and associated disorders.

[4]  I. Obeid,et al.  Automated identification of abnormal adult EEGs , 2015, 2015 IEEE Signal Processing in Medicine and Biology Symposium (SPMB).

[5]  Abdulhamit Subasi,et al.  EEG signal classification using PCA, ICA, LDA and support vector machines , 2010, Expert Syst. Appl..

[6]  Christoph Lehmann,et al.  Application and comparison of classification algorithms for recognition of Alzheimer's disease in electrical brain activity (EEG) , 2007, Journal of Neuroscience Methods.

[7]  Bin He,et al.  Seizure prediction in patients with focal hippocampal epilepsy , 2017, Clinical Neurophysiology.

[8]  Ozal Yildirim,et al.  AN OVERVIEW OF POPULAR DEEP LEARNING METHODS , 2017 .

[9]  Cüneyt Güzelis,et al.  Object recognition and detection with deep learning for autonomous driving applications , 2017, Simul..

[10]  J Nasatir Temple University Hospital. , 1987, Interior design.

[11]  Guangyi Chen,et al.  Automatic EEG seizure detection using dual-tree complex wavelet-Fourier features , 2014, Expert Syst. Appl..

[12]  U. Raghavendra,et al.  A deep learning approach for Parkinson’s disease diagnosis from EEG signals , 2018, Neural Computing and Applications.

[13]  H. Adeli,et al.  Analysis of EEG records in an epileptic patient using wavelet transform , 2003, Journal of Neuroscience Methods.

[14]  Fathi E. Abd El-Samie,et al.  EEG seizure detection and prediction algorithms: a survey , 2014, EURASIP J. Adv. Signal Process..

[15]  Ram Bilas Pachori,et al.  A Multivariate Approach for Patient-Specific EEG Seizure Detection Using Empirical Wavelet Transform , 2017, IEEE Transactions on Biomedical Engineering.

[16]  Geoffrey E. Hinton,et al.  Application of Deep Belief Networks for Natural Language Understanding , 2014, IEEE/ACM Transactions on Audio, Speech, and Language Processing.

[17]  U. Rajendra Acharya,et al.  Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals , 2017, Comput. Biol. Medicine.

[18]  Dong Yu,et al.  Exploring convolutional neural network structures and optimization techniques for speech recognition , 2013, INTERSPEECH.

[19]  U. Rajendra Acharya,et al.  An efficient compression of ECG signals using deep convolutional autoencoders , 2018, Cognitive Systems Research.

[20]  Reza Tafreshi,et al.  Predicting Epileptic Seizures in Scalp EEG Based on a Variational Bayesian Gaussian Mixture Model of Zero-Crossing Intervals , 2013, IEEE Transactions on Biomedical Engineering.

[21]  Tammy N Tsuchida,et al.  American Clinical Neurophysiology Society Guideline 3: A Proposal for Standard Montages to Be Used in Clinical EEG. , 2016, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[22]  Joseph Picone,et al.  The Temple University Hospital EEG Data Corpus , 2016, Front. Neurosci..

[23]  Lawrence D. Jackel,et al.  Backpropagation Applied to Handwritten Zip Code Recognition , 1989, Neural Computation.

[24]  S Thomas George,et al.  Application and Evaluation of Independent Component Analysis Methods to Generalized Seizure Disorder Activities Exhibited in the Brain , 2017, Clinical EEG and neuroscience.

[25]  U. Rajendra Acharya,et al.  Use of principal component analysis for automatic classification of epileptic EEG activities in wavelet framework , 2012, Expert Syst. Appl..

[26]  Hakan Isik,et al.  Diagnosis of Epilepsy from Electroencephalography Signals Using Multilayer Perceptron and Elman Artificial Neural Networks and Wavelet Transform , 2012, Journal of Medical Systems.

[27]  Martin J. Wainwright,et al.  Noisy matrix decomposition via convex relaxation: Optimal rates in high dimensions , 2011, ICML.

[28]  Manoranjan Paul,et al.  Seizure Prediction Using Undulated Global and Local Features , 2017, IEEE Transactions on Biomedical Engineering.

[29]  Alex Graves,et al.  Playing Atari with Deep Reinforcement Learning , 2013, ArXiv.

[30]  U. Rajendra Acharya,et al.  Automated EEG-based screening of depression using deep convolutional neural network , 2018, Comput. Methods Programs Biomed..

[31]  Rami J Oweis,et al.  Seizure classification in EEG signals utilizing Hilbert-Huang transform , 2011, Biomedical engineering online.

[32]  U. Rajendra Acharya,et al.  A deep convolutional neural network model to classify heartbeats , 2017, Comput. Biol. Medicine.

[33]  Taghi M. Khoshgoftaar,et al.  Deep learning applications and challenges in big data analytics , 2015, Journal of Big Data.

[34]  Özal Yildirim,et al.  A novel wavelet sequence based on deep bidirectional LSTM network model for ECG signal classification , 2018, Comput. Biol. Medicine.

[35]  Ettore Lettich,et al.  Ten Percent Electrode System for Topographic Studies of Spontaneous and Evoked EEG Activities , 1985 .

[36]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[37]  Nitish Srivastava,et al.  Dropout: a simple way to prevent neural networks from overfitting , 2014, J. Mach. Learn. Res..

[38]  U. Rajendra Acharya,et al.  Application of Non-Linear and Wavelet Based Features for the Automated Identification of Epileptic EEG signals , 2012, Int. J. Neural Syst..

[39]  Tülay Yildirim,et al.  Recognition of sign language using capsule networks , 2018, 2018 26th Signal Processing and Communications Applications Conference (SIU).

[40]  U. Rajendra Acharya,et al.  Automatic Detection of Epileptic EEG Signals Using Higher Order cumulant Features , 2011, Int. J. Neural Syst..

[41]  U. Rajendra Acharya,et al.  Arrhythmia detection using deep convolutional neural network with long duration ECG signals , 2018, Comput. Biol. Medicine.

[42]  U. Rajendra Acharya,et al.  Automated Diagnosis of epilepsy using CWT, HOS and Texture parameters , 2013, Int. J. Neural Syst..

[43]  Patrick M. Pilarski,et al.  First steps towards an intelligent laser welding architecture using deep neural networks and reinforcement learning , 2014 .

[44]  Weidong Zhou,et al.  Epileptic EEG Identification via LBP Operators on Wavelet Coefficients , 2018, Int. J. Neural Syst..

[45]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[46]  Saleh A. Alshebeili,et al.  Epileptic Seizure Prediction Using CSP and LDA for Scalp EEG Signals , 2017, Comput. Intell. Neurosci..

[47]  Abdulhamit Subasi,et al.  Automatic identification of epileptic seizures from EEG signals using linear programming boosting , 2016, Comput. Methods Programs Biomed..

[48]  Jiawei Yang,et al.  Convolutional neural networks for seizure prediction using intracranial and scalp electroencephalogram , 2018, Neural Networks.

[49]  Alexandros T. Tzallas,et al.  Epileptic Seizures Classification Based on Long-Term EEG Signal Wavelet Analysis , 2017, BHI 2017.

[50]  Joel E. W. Koh,et al.  Nonlinear Dynamics Measures for Automated EEG-Based Sleep Stage Detection , 2015, European Neurology.

[51]  Shane Legg,et al.  Human-level control through deep reinforcement learning , 2015, Nature.

[52]  H. Adeli,et al.  Automated seizure prediction , 2018, Epilepsy & Behavior.

[53]  H. Jasper Reticular formation of the brain , 1958 .

[54]  U. Rajendra Acharya,et al.  Deep learning for healthcare applications based on physiological signals: A review , 2018, Comput. Methods Programs Biomed..

[55]  U. Rajendra Acharya,et al.  Automated EEG analysis of epilepsy: A review , 2013, Knowl. Based Syst..