Wavelet Radiosity on Arbitrary Planar Surfaces

Wavelet radiosity is, by its nature, restricted to parallelograms or triangles. This paper presents an innovative technique enabling wavelet radiosity computations on planar surfaces of arbitrary shape, including concave contours or contours with holes. This technique replaces the need for triangulating such complicated shapes, greatly reducing the complexity of the wavelet radiosity algorithm and the computation time. It also gives a better approximation of the radiosity function, resulting in better visual results. Our technique works by separating the radiosity function from the surface geometry, extending the radiosity function defined on the original shape onto a simpler domain — a parallelogram — better behaved for hierarchical refinement and wavelet computations.

[1]  George Drettakis,et al.  A Practical Analysis of Clustering Strategies for Hierarchical Radiosity , 1999, Comput. Graph. Forum.

[2]  J. Boissonnat,et al.  Algorithmic Geometry: Frontmatter , 1998 .

[3]  Donald P. Greenberg,et al.  Modeling the interaction of light between diffuse surfaces , 1984, SIGGRAPH.

[4]  Mariette Yvinec,et al.  Dynamic location in an arrangement of line segments in the plane , 1991 .

[5]  Herbert Edelsbrunner,et al.  Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.

[6]  Jean-Claude Paul,et al.  Parallel Wavelet Radiosity , 1998 .

[7]  Hans-Peter Seidel,et al.  Getting Rid of Links in Hierarchical Radiosity , 1998, Comput. Graph. Forum.

[8]  Pat Hanrahan,et al.  Wavelet radiosity , 1993, SIGGRAPH.

[9]  Pat Hanrahan,et al.  A rapid hierarchical radiosity algorithm , 1991, SIGGRAPH.

[10]  Michael Garland,et al.  Face Cluster Radiosity , 1999, Rendering Techniques.

[11]  Yves D. Willems,et al.  HIRAD: A hierarchical higher order radiosity implementation , 1996 .

[12]  Christophe Winkler,et al.  Expérimentation d'algorithmes de calcul de radiosité à base d'ondelettes. (Experimentation of wavelet radiosity algorithms) , 1998 .

[13]  Paul S. Heckbert,et al.  An Empirical Comparison of Progressive and Wavelet Radiosity , 1997, Rendering Techniques.

[14]  Dani Lischinski,et al.  Rendering Techniques '99 , 1999 .

[15]  Yves D. Willems,et al.  Error Control for Radiosity , 1996, Rendering Techniques.

[16]  James Arvo,et al.  A clustering algorithm for radiosity in complex environments , 1994, SIGGRAPH.

[17]  François X. Sillion,et al.  A Unified Hierarchical Algorithm for Global Illumination with Scattering Volumes and Object Clusters , 1995, IEEE Trans. Vis. Comput. Graph..

[18]  Stephen Mann,et al.  Making radiosity usable: automatic preprocessing and meshing techniques for the generation of accurate radiosity solutions , 1991, SIGGRAPH.

[19]  Jürgen Teich,et al.  Minimal enclosing parallelogram with application , 1995, SCG '95.

[20]  Roger J. Hubbold,et al.  Efficient Hierarchical Refinement and Clustering for Radiosity in Complex Environments , 1996, Comput. Graph. Forum.

[21]  Campus de Beaulieu,et al.  Discontinuity Meshing and Hierarchical MultiWavelet Radiosity , 1995 .

[22]  Nicolas Holzschuch,et al.  A Novel Approach Makes Higher Order Wavelets Really Efficient for Radiosity , 2000, Comput. Graph. Forum.

[23]  Mariette Yvinec,et al.  Algorithmic geometry , 1998 .