Fuzzy Rule Interpolation based tool life modeling using RBE-SI and FRIPOC

The aim of this study is to justify the practical applicability of sparse fuzzy systems for modeling real-life problems, i.e. the fuzzy modeling of tool life in case of milling. In order to solve this task the fuzzy model identification method RBE-SI and the fuzzy inference technique FRIPOC is going to be used.

[1]  E. H. Mamdani,et al.  An Experiment in Linguistic Synthesis with a Fuzzy Logic Controller , 1999, Int. J. Man Mach. Stud..

[2]  Igor Skrjanc,et al.  Design and Stability Analysis of Fuzzy Model-based Predictive Control – A Case Study , 2007, J. Intell. Robotic Syst..

[3]  S. Kovács,et al.  Fuzzy set approximation using polar co-ordinates and linguistic term shifting , 2005 .

[4]  Zsolt Csaba,et al.  Tool Life Modelling Using RBE-DSS Method and LESFRI Inference Mechanism 1 , 2008 .

[5]  Michio Sugeno,et al.  Fuzzy identification of systems and its applications to modeling and control , 1985, IEEE Transactions on Systems, Man, and Cybernetics.

[6]  László T. Kóczy,et al.  Fuzzy Models and Interpolation , 2007 .

[7]  László T. Kóczy,et al.  A survey on universal approximation and its limits in soft computing techniques , 2003, Int. J. Approx. Reason..

[8]  Kevin Kok Wai Wong,et al.  Fuzzy Rule Interpolation Matlab Toolbox - FRI Toolbox , 2006, 2006 IEEE International Conference on Fuzzy Systems.

[9]  L. T. Kóczy,et al.  Advanced Bacterial Memetic Algorithms , 2008 .

[10]  M. Kronenberg Replacing the Taylor formula by a new tool life equation , 1970 .

[11]  László T. Kóczy,et al.  Extracting Trapezoidal Membership Functions of a Fuzzy Rule System by Bacterial Algorithm , 2001, Fuzzy Days.

[12]  Domonkos Tikk,et al.  Universal approximation and its limits in soft computing techniques. An ovewview , 2001 .

[13]  Frank Klawonn,et al.  Constructing a fuzzy controller from data , 1997, Fuzzy Sets Syst..

[14]  S. Kovács,et al.  Fuzzy Rule Interpolation by the Least Squares Method , 2006 .

[15]  Zhiheng Huang,et al.  Fuzzy interpolation with generalized representative values , 2004 .

[16]  László T. Kóczy,et al.  A generalized concept for fuzzy rule interpolation , 2004, IEEE Transactions on Fuzzy Systems.

[17]  Tiberiu Colosi,et al.  Modeling and numerical simulation method for systems with distributed parameters , 2009, 2009 5th International Symposium on Applied Computational Intelligence and Informatics.

[18]  Z.C. Johanyak,et al.  Sparse Fuzzy Model Identification Matlab Toolox - RuleMaker Toolbox , 2008, 2008 IEEE International Conference on Computational Cybernetics.

[19]  Michio Sugeno,et al.  A fuzzy-logic-based approach to qualitative modeling , 1993, IEEE Trans. Fuzzy Syst..

[20]  Vladimir Cretu,et al.  Experiments on a grid layer prototype for shared data programming model , 2009, 2009 5th International Symposium on Applied Computational Intelligence and Informatics.

[21]  D. Hladek,et al.  Hierarchical fuzzy inference system for robotic pursuit evasion task , 2008, 2008 6th International Symposium on Applied Machine Intelligence and Informatics.

[22]  Z.C. Johanyak,et al.  Sparse Fuzzy System Generation by Rule Base Extension , 2007, 2007 11th International Conference on Intelligent Engineering Systems.

[23]  Bart Kosko,et al.  Optimal fuzzy rules cover extrema , 1995, Int. J. Intell. Syst..

[24]  Zsolt Csaba Johanyák,et al.  Fuzzy Rule Interpolation Based on Polar Cuts , 2006 .

[25]  József K. Tar,et al.  Fuzzy Control System Performance Enhancement by Iterative Learning Control , 2008, IEEE Transactions on Industrial Electronics.

[26]  D. Shepard A two-dimensional interpolation function for irregularly-spaced data , 1968, ACM National Conference.

[27]  L. Kóczy,et al.  A projection based method for sparse fuzzy system generation , 2002 .