An all-speed relaxation scheme for interface flows with surface tension
暂无分享,去创建一个
[1] Rémi Abgrall,et al. Computations of compressible multifluids , 2001 .
[2] R. Abgrall. How to Prevent Pressure Oscillations in Multicomponent Flow Calculations , 1996 .
[3] T. Hou,et al. Why nonconservative schemes converge to wrong solutions: error analysis , 1994 .
[4] H. Guillard,et al. On the behavior of upwind schemes in the low Mach number limit: II. Godunov type schemes , 2004 .
[5] Roland Masson,et al. A relaxation method for two-phase flow models with hydrodynamic closure law , 2005, Numerische Mathematik.
[6] Rémi Abgrall,et al. A Simple Method for Compressible Multifluid Flows , 1999, SIAM J. Sci. Comput..
[7] J. Haas,et al. Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities , 1987, Journal of Fluid Mechanics.
[8] Pascal Hénon,et al. PaStiX: A High-Performance Parallel Direct Solver for Sparse Symmetric Definite Systems , 2000 .
[9] M. Baer,et al. A two-phase mixture theory for the deflagration-to-detonation transition (ddt) in reactive granular materials , 1986 .
[10] J. Brackbill,et al. A continuum method for modeling surface tension , 1992 .
[11] Theo G. Theofanous,et al. High-fidelity interface tracking in compressible flows: Unlimited anchored adaptive level set , 2007, J. Comput. Phys..
[12] Pascal Hénon,et al. PaStiX: a high-performance parallel direct solver for sparse symmetric positive definite systems , 2002, Parallel Comput..
[13] F. Bouchut. Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws: and Well-Balanced Schemes for Sources , 2005 .
[14] Rémi Abgrall,et al. Proposition de méthodes et modèles eulériens pour les problèmes à interfaces entre fluides compressibles en présence de transfert de chaleur , 2002 .
[15] E. Toro. Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .
[16] T. Alazard,et al. Low Mach Number Limit of the Full Navier-Stokes Equations , 2005, math/0501386.
[17] D. J. Torres,et al. On the theory and computation of surface tension: the elimination of parasitic currents through energy conservation in the second-gradient method , 2002 .
[18] Xiangyu Hu,et al. An interface interaction method for compressible multifluids , 2004 .
[19] R. Abgrall,et al. A Multiphase Godunov Method for Compressible Multifluid and Multiphase Flows , 1999 .
[20] C. D. Levermore,et al. Hyperbolic conservation laws with stiff relaxation terms and entropy , 1994 .
[21] D. Stewart,et al. Two-phase modeling of deflagration-to-detonation transition in granular materials: Reduced equations , 2001 .
[22] Gérard Gallice,et al. Roe Matrices for Ideal MHD and Systematic Construction of Roe Matrices for Systems of Conservation Laws , 1997 .
[23] B. Nkonga,et al. Numerical approximation of a degenerated non‐conservative multifluid model: relaxation scheme , 2005 .
[24] G. D. Maso,et al. Definition and weak stability of nonconservative products , 1995 .
[25] Eli Turkel,et al. Review of preconditioning methods for fluid dynamics , 1993 .
[26] Richard Saurel,et al. A compressible flow model with capillary effects , 2005 .
[27] Xiaolin Li,et al. Robust Computational Algorithms for Dynamic Interface Tracking in Three Dimensions , 1999, SIAM J. Sci. Comput..
[28] Philippe G. LeFloch,et al. Nonclassical Shocks and Kinetic Relations: Strictly Hyperbolic Systems , 2000, SIAM J. Math. Anal..
[29] H. Guillard,et al. On the behaviour of upwind schemes in the low Mach number limit , 1999 .
[30] Tai-Ping Liu. Hyperbolic conservation laws with relaxation , 1987 .
[31] C. Merkle,et al. Computation of Multiphase Mixture Flows with Compressibility Effects , 2002 .
[32] Philip E. O. Buelow,et al. Stability and convergence analysis of implicit upwind schemes , 2001 .
[33] S. Osher,et al. A Non-oscillatory Eulerian Approach to Interfaces in Multimaterial Flows (the Ghost Fluid Method) , 1999 .
[34] Hervé Guillard,et al. A five equation reduced model for compressible two phase flow problems , 2005 .
[35] B. Perthame,et al. Relaxation of Energy and Approximate Riemann Solvers for General Pressure Laws in Fluid Dynamics , 1998 .
[36] James J. Quirk,et al. On the dynamics of a shock–bubble interaction , 1994, Journal of Fluid Mechanics.
[37] S. Zaleski,et al. DIRECT NUMERICAL SIMULATION OF FREE-SURFACE AND INTERFACIAL FLOW , 1999 .
[38] I. Suliciu,et al. Energy estimates in rate-type thermo-viscoplasticity , 1998 .
[39] S. Zaleski,et al. Volume-of-Fluid Interface Tracking with Smoothed Surface Stress Methods for Three-Dimensional Flows , 1999 .
[40] P. Floch. Entropy weak solutions to nonlinear hyperbolic systems under nonconservative form , 1988 .
[41] Eli Turkel,et al. Pseudo-time algorithms for the Navier-Stokes equations , 1986 .
[42] Z. Xin,et al. The relaxation schemes for systems of conservation laws in arbitrary space dimensions , 1995 .