An all-speed relaxation scheme for interface flows with surface tension

We consider interface flows where compressibility and capillary forces (surface tension) are significant. These flows are described by a non-conservative, unconditionally hyperbolic multiphase model. The numerical approximation is based on finite-volume method for unstructured grids. At the discrete level, the surface tension is approximated by a volume force (CSF formulation). The interface physical properties are recovered by designing an appropriate linearized Riemann solver (Relaxation scheme) that prevents spurious oscillations near material interfaces. For low-speed flows, a preconditioning linearization is proposed and the low Mach asymptotic is formally recovered. Numerical computations, for a bubble equilibrium, converge to the required Laplace law and the dynamic of a drop, falling under gravity, is in agreement with experimental observations.

[1]  Rémi Abgrall,et al.  Computations of compressible multifluids , 2001 .

[2]  R. Abgrall How to Prevent Pressure Oscillations in Multicomponent Flow Calculations , 1996 .

[3]  T. Hou,et al.  Why nonconservative schemes converge to wrong solutions: error analysis , 1994 .

[4]  H. Guillard,et al.  On the behavior of upwind schemes in the low Mach number limit: II. Godunov type schemes , 2004 .

[5]  Roland Masson,et al.  A relaxation method for two-phase flow models with hydrodynamic closure law , 2005, Numerische Mathematik.

[6]  Rémi Abgrall,et al.  A Simple Method for Compressible Multifluid Flows , 1999, SIAM J. Sci. Comput..

[7]  J. Haas,et al.  Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities , 1987, Journal of Fluid Mechanics.

[8]  Pascal Hénon,et al.  PaStiX: A High-Performance Parallel Direct Solver for Sparse Symmetric Definite Systems , 2000 .

[9]  M. Baer,et al.  A two-phase mixture theory for the deflagration-to-detonation transition (ddt) in reactive granular materials , 1986 .

[10]  J. Brackbill,et al.  A continuum method for modeling surface tension , 1992 .

[11]  Theo G. Theofanous,et al.  High-fidelity interface tracking in compressible flows: Unlimited anchored adaptive level set , 2007, J. Comput. Phys..

[12]  Pascal Hénon,et al.  PaStiX: a high-performance parallel direct solver for sparse symmetric positive definite systems , 2002, Parallel Comput..

[13]  F. Bouchut Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws: and Well-Balanced Schemes for Sources , 2005 .

[14]  Rémi Abgrall,et al.  Proposition de méthodes et modèles eulériens pour les problèmes à interfaces entre fluides compressibles en présence de transfert de chaleur , 2002 .

[15]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[16]  T. Alazard,et al.  Low Mach Number Limit of the Full Navier-Stokes Equations , 2005, math/0501386.

[17]  D. J. Torres,et al.  On the theory and computation of surface tension: the elimination of parasitic currents through energy conservation in the second-gradient method , 2002 .

[18]  Xiangyu Hu,et al.  An interface interaction method for compressible multifluids , 2004 .

[19]  R. Abgrall,et al.  A Multiphase Godunov Method for Compressible Multifluid and Multiphase Flows , 1999 .

[20]  C. D. Levermore,et al.  Hyperbolic conservation laws with stiff relaxation terms and entropy , 1994 .

[21]  D. Stewart,et al.  Two-phase modeling of deflagration-to-detonation transition in granular materials: Reduced equations , 2001 .

[22]  Gérard Gallice,et al.  Roe Matrices for Ideal MHD and Systematic Construction of Roe Matrices for Systems of Conservation Laws , 1997 .

[23]  B. Nkonga,et al.  Numerical approximation of a degenerated non‐conservative multifluid model: relaxation scheme , 2005 .

[24]  G. D. Maso,et al.  Definition and weak stability of nonconservative products , 1995 .

[25]  Eli Turkel,et al.  Review of preconditioning methods for fluid dynamics , 1993 .

[26]  Richard Saurel,et al.  A compressible flow model with capillary effects , 2005 .

[27]  Xiaolin Li,et al.  Robust Computational Algorithms for Dynamic Interface Tracking in Three Dimensions , 1999, SIAM J. Sci. Comput..

[28]  Philippe G. LeFloch,et al.  Nonclassical Shocks and Kinetic Relations: Strictly Hyperbolic Systems , 2000, SIAM J. Math. Anal..

[29]  H. Guillard,et al.  On the behaviour of upwind schemes in the low Mach number limit , 1999 .

[30]  Tai-Ping Liu Hyperbolic conservation laws with relaxation , 1987 .

[31]  C. Merkle,et al.  Computation of Multiphase Mixture Flows with Compressibility Effects , 2002 .

[32]  Philip E. O. Buelow,et al.  Stability and convergence analysis of implicit upwind schemes , 2001 .

[33]  S. Osher,et al.  A Non-oscillatory Eulerian Approach to Interfaces in Multimaterial Flows (the Ghost Fluid Method) , 1999 .

[34]  Hervé Guillard,et al.  A five equation reduced model for compressible two phase flow problems , 2005 .

[35]  B. Perthame,et al.  Relaxation of Energy and Approximate Riemann Solvers for General Pressure Laws in Fluid Dynamics , 1998 .

[36]  James J. Quirk,et al.  On the dynamics of a shock–bubble interaction , 1994, Journal of Fluid Mechanics.

[37]  S. Zaleski,et al.  DIRECT NUMERICAL SIMULATION OF FREE-SURFACE AND INTERFACIAL FLOW , 1999 .

[38]  I. Suliciu,et al.  Energy estimates in rate-type thermo-viscoplasticity , 1998 .

[39]  S. Zaleski,et al.  Volume-of-Fluid Interface Tracking with Smoothed Surface Stress Methods for Three-Dimensional Flows , 1999 .

[40]  P. Floch Entropy weak solutions to nonlinear hyperbolic systems under nonconservative form , 1988 .

[41]  Eli Turkel,et al.  Pseudo-time algorithms for the Navier-Stokes equations , 1986 .

[42]  Z. Xin,et al.  The relaxation schemes for systems of conservation laws in arbitrary space dimensions , 1995 .