Viscoelastic modeling of nanoindentation experiments: A multicurve method

Nanoindentation is an increasingly used method of extracting surface mechanical properties of viscoelastic materials, especially polymers. Recently, Hutcheson and McKenna used a viscoelastic contact mechanics model to analyze the contact problem between a nanosphere and polystyrene surface. In nanoindentation experiments, the ramp loading test is a similar problem to the particle embedment experiment except that the indentation load function differs. The motivation in this work is to expand the Hutcheson and McKenna analysis to the nanoindentation problem. In particular, we illustrate the limitations of analyzing only a single load-indentation curve, which does not provide enough information to determine the full range of the viscoelastic response of a polymer, and we show that performing a test sequence that includes multiple loading rates or indentation rates spanning two or more orders of magnitude greatly improves the extracted viscoelastic properties. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014, 52, 633–639

[1]  Gregory B. McKenna,et al.  Finite Step Rate Corrections in Stress Relaxation Experiments: A Comparison of Two Methods , 2004 .

[2]  G. Constantinides,et al.  Enhanced Stiffness of Amorphous Polymer Surfaces under Confinement of Localized Contact Loads , 2007 .

[3]  J. Weese,et al.  Determination of the relaxation spectrum by a regularization method , 1989 .

[4]  J. Forrest,et al.  Free surfaces cause reductions in the glass transition temperature of thin polystyrene films. , 2003, Physical review letters.

[5]  Gregory B. McKenna,et al.  Modeling the evolution of the dynamic mechanical properties of a commercial epoxy during cure after gelation , 2000 .

[6]  Wolfgang G. Knauss,et al.  Improved relaxation time coverage in ramp-strain histories , 2007 .

[7]  Zhong Zhou,et al.  On the measurements of viscoelastic functions of a sphere by nanoindentation , 2010 .

[8]  On the accurate determination of the viscoelastic spectra , 1994 .

[9]  G. Pharr,et al.  An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments , 1992 .

[10]  G. McKenna,et al.  Comparison of surface mechanical properties among linear and star polystyrenes: Surface softening and stiffening at different temperatures , 2013 .

[11]  G. Pharr,et al.  Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology , 2004 .

[12]  Shuo-Hung Chang,et al.  Viscoelastic characterization of polymers using instrumented indentation. I. Quasi-static testing , 2005 .

[13]  I. N. Sneddon The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile , 1965 .

[14]  J. Houston A local-probe analysis of the rheology of a , 2005 .

[15]  G. McKenna,et al.  Evidence of surface softening in polymers and their nanocomposites as determined by spontaneous particle embedment , 2011 .

[16]  Igor Emri,et al.  Generating line spectra from experimental responses. Part I: Relaxation modulus and creep compliance , 1993 .

[17]  S. A. Hutcheson,et al.  Nanosphere embedding into polymer surfaces: a viscoelastic contact mechanics analysis. , 2005, Physical review letters.

[18]  T. C. T. Ting,et al.  The Contact Stresses Between a Rigid Indenter and a Viscoelastic Half-Space , 1966 .

[19]  J. Forrest,et al.  Measuring the Surface Dynamics of Glassy Polymers , 2008, Science.

[20]  S. A. Hutcheson Evaluation of viscoelastic materials: The study of nanosphere embedment into polymer surfaces and rheology of simple glass formers using a compliant rheometer , 2008 .

[21]  Patricia K. Lamm,et al.  A Survey of Regularization Methods for First-Kind Volterra Equations , 2000 .

[22]  G. McKenna,et al.  Unusual Surface Mechanical Properties of Poly(α-methylstyrene): Surface Softening and Stiffening at Different Temperatures , 2012 .

[23]  J. Kaschta,et al.  Calculation of discrete retardation spectra from creep data — I. Method , 1994 .

[24]  S. A. Hutcheson,et al.  Comment on “The properties of free polymer surfaces and their influence on the glass transition temperature of thin polystyrene films” by J.S. Sharp, J.H. Teichroeb and J.A. Forrest , 2007, The European physical journal. E, Soft matter.

[25]  J. Vlassak,et al.  Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments , 1998 .

[26]  En-Jui Lee,et al.  The Contact Problem for Viscoelastic Bodies , 1960 .

[27]  Jeffrey C. Lagarias,et al.  Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions , 1998, SIAM J. Optim..

[28]  R. Sullivan On the use of a spectrum-based model for linear viscoelastic materials , 2007 .