A multilevel adaptive approach for computational cardiology

A space-time adaptive mesh refinement (AMR) algorithm is proposed for cardiac problems, arising from numerical modeling of electrical wave propagation in the heart. A cardiac problem, such as the bidomain or monodomain model, consists of a singularly perturbed reaction-diffusion system coupled with a set of nonlinear stiff ordinary differential equations. The algorithm first uses an operator splitting technique to separate linear diffusion from nonlinear stiff reactions in the model problem to be solved. The reactions are integrated adaptively with a second-order singly diagonally implicit Runge-Kutta method. The decoupled linear diffusion is implicitly discretized with a conforming finite element approximation on adaptively refined grids, which are dynamically created by the AMR algorithm. The resulting composite grid equations are solved by a standard multilevel/multigrid iteration algorithm. The AMR algorithm uses quadrilateral or hexahedral elements to construct a hierarchy of properly nested level grids. The grid on each level is generated through regular bisection or refinement from a subgrid of that on the previous coarser level. We represent a grid by lists of elements and the lower dimensional facets, including nodes, edges and sides. With this grid representation, the connectivity of grid entities is well established, which makes grid-based operations easy to implement. Since the composite grids in the hierarchy do not match along coarse-fine grid interfaces, the Steklov-Poincare continuity conditions are weakly enforced, which results in a conforming finite element discretization on composite grids. The AMR algorithm follows Berger-Oliger's approach in time stepping. The hierarchical system is recursively integrated. Starting from the root level, a coarse level is first integrated with a large time step, followed by integrating its next finer level with a few small time steps until both levels are synchronized. At the moment of synchronization, the algorithm invokes some of the typical routines such as mesh regridding and data up-/downscaling. An error estimation technique of Richardson extrapolation type is proposed for tagging of cells. Numerical experiments with the AMR algorithm are presented at the end as part of the thesis work. It is demonstrated that the convergence rate of our AMR algorithm is second-order. Numerical results also show the numerical accuracy, algorithm efficiency, geometry flexibility and the promising application to realistic simulations of our AMR algorithm.

[1]  C. Henriquez,et al.  Cardiac propagation simulation. , 1992, Critical reviews in biomedical engineering.

[2]  L. Clerc Directional differences of impulse spread in trabecular muscle from mammalian heart. , 1976, The Journal of physiology.

[3]  J. Lambert Numerical Methods for Ordinary Differential Equations , 1991 .

[4]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[5]  P. C. Franzone,et al.  Wavefront propagation in an activation model of the anisotropic cardiac tissue: asymptotic analysis and numerical simulations , 1990, Journal of mathematical biology.

[6]  Peter K. Moore,et al.  An Adaptive Finite Element Method for Parabolic Differential Systems: Some Algorithmic Considerations in Solving in Three Space Dimensions , 1999, SIAM J. Sci. Comput..

[7]  P. Oswald,et al.  Remarks on the Abstract Theory of Additive and Multiplicative Schwarz Algorithms , 1995 .

[8]  Ricardo H. Nochetto,et al.  A posteriori error control for the Allen–Cahn problem: circumventing Gronwall's inequality , 2004 .

[9]  Linda R. Petzold,et al.  Observations on an adaptive moving grid method for one-dimensional systems of partial differential equations , 1987 .

[10]  Alexei M. Khokhlov,et al.  Fully Threaded Tree Algorithms for Adaptive Refinement Fluid Dynamics Simulations , 1997, astro-ph/9701194.

[11]  Ya-Zhe Chen,et al.  Second Order Elliptic Equations and Elliptic Systems , 1998 .

[12]  A. McCulloch,et al.  A collocation-Galerkin finite element model of cardiac action potential propagation , 1994, IEEE Transactions on Biomedical Engineering.

[13]  Michael Zingale,et al.  High-Performance Reactive Fluid Flow Simulations Using Adaptive Mesh Refinement on Thousands of Processors , 2000, ACM/IEEE SC 2000 Conference (SC'00).

[14]  A. M. Scher,et al.  Effect of Tissue Anisotropy on Extracellular Potential Fields in Canine Myocardium in Situ , 1982, Circulation research.

[15]  James P. Keener,et al.  Waves in Excitable Media , 1980 .

[16]  Jack Xin,et al.  Front Propagation in Heterogeneous Media , 2000, SIAM Rev..

[17]  Harry Yserentant,et al.  Hierarchical bases of finite-element spaces in the discretization of nonsymmetric elliptic boundary value problems , 1985, Computing.

[18]  C S Henriquez,et al.  A space-time adaptive method for simulating complex cardiac dynamics. , 2000, Physical review letters.

[19]  Richard E. Ewing,et al.  A preconditioning technique for the efficient solution of problems with local grid refinement , 1988 .

[20]  J. Verwer,et al.  Stability of Runge-Kutta Methods for Stiff Nonlinear Differential Equations , 1984 .

[21]  P. Clément Approximation by finite element functions using local regularization , 1975 .

[22]  Shi Jin,et al.  Numerical Study of Time-Splitting Spectral Discretizations of Nonlinear Schrödinger Equations in the Semiclassical Regimes , 2003, SIAM J. Sci. Comput..

[23]  C. Peskin The immersed boundary method , 2002, Acta Numerica.

[24]  P. Colella,et al.  Local adaptive mesh refinement for shock hydrodynamics , 1989 .

[25]  G. Marchuk Splitting and alternating direction methods , 1990 .

[26]  José Jalife,et al.  Cardiac Electrophysiology: Fourth Edition , 2004 .

[27]  Randolph E. Bank,et al.  A-posteriori error estimates. Adaptive local mesh refinement and multigrid iteration , 1986 .

[28]  M. Berger,et al.  An Adaptive Version of the Immersed Boundary Method , 1999 .

[29]  Kjell Gustafsson,et al.  Control-theoretic techniques for stepsize selection in implicit Runge-Kutta methods , 1991, TOMS.

[30]  K.T. Ng,et al.  A new three-dimensional finite-difference bidomain formulation for inhomogeneous anisotropic cardiac tissues , 1998, IEEE Transactions on Biomedical Engineering.

[31]  Flavio H. Fenton,et al.  Numerical simulations of cardiac dynamics. What can we learn from simple and complex models? , 2000, Computers in Cardiology 2000. Vol.27 (Cat. 00CH37163).

[32]  Hans Othmer,et al.  A computational study of wave propagation in a model for anisotropic cardiac ventricular tissue , 1995, HPCN Europe.

[33]  D. Brandt,et al.  Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .

[34]  Edward J. Vigmond,et al.  Computationally Efficient Model for Simulating Electrical Activity in Cardiac Tissue with Fiber Rotation , 1999, Annals of Biomedical Engineering.

[35]  R E Ideker,et al.  Review of Mechanisms by Which Electrical Stimulation Alters the Transmembrane Potential , 1999, Journal of cardiovascular electrophysiology.

[36]  Anthony T. Patera,et al.  Domain Decomposition by the Mortar Element Method , 1993 .

[37]  P. Hunter,et al.  Mathematical model of geometry and fibrous structure of the heart. , 1991, The American journal of physiology.

[38]  Leslie Tung,et al.  A bi-domain model for describing ischemic myocardial d-c potentials , 1978 .

[39]  P. C. Franzone,et al.  Spreading of excitation in 3-D models of the anisotropic cardiac tissue. I. Validation of the eikonal model. , 1993, Mathematical biosciences.

[40]  Joseph E. Pasciak,et al.  New estimates for multilevel algorithms including the V-cycle , 1993 .

[41]  Randall J. LeVeque,et al.  Cartesian Grid Methods for Fluid Flow in Complex Geometries , 2001 .

[42]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[43]  Marsha Berger,et al.  Data structures for adaptive grid generation , 1986 .

[44]  I. Babuska The finite element method with Lagrangian multipliers , 1973 .

[45]  S. Tentoni,et al.  Mathematical modeling of the excitation process in myocardial tissue: influence of fiber rotation on wavefront propagation and potential field. , 1990, Mathematical biosciences.

[46]  G. Bellettini,et al.  Convergence of front propagation for anisotropic bistable reaction-diffusion equations , 1997 .

[47]  Barry Smith,et al.  Domain Decomposition Methods for Partial Differential Equations , 1997 .

[48]  R. LeVeque,et al.  An Adaptive Cartesian Mesh Algorithm for the Euler Equations in Arbitrary Geometries , 1989 .

[49]  Henry S. Greenside,et al.  A space-time adaptive mesh refinement method for simulating complex cardiac electrical dynamics , 2000 .

[50]  C. Henriquez Simulating the electrical behavior of cardiac tissue using the bidomain model. , 1993, Critical reviews in biomedical engineering.

[51]  Faker Ben Belgacem,et al.  The Mortar finite element method with Lagrange multipliers , 1999, Numerische Mathematik.

[52]  J. M. Watt Numerical Initial Value Problems in Ordinary Differential Equations , 1972 .

[53]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[54]  Richard D. Hornung,et al.  Adaptive Mesh Refinement and Multilevel Iteration for Flow in Porous Media , 1997 .

[55]  J. Tinsley Oden,et al.  A parallel hp -adaptive discontinuous Galerkin method for hyperbolic conservation laws , 1996 .

[56]  J. Pasciak,et al.  Parallel multilevel preconditioners , 1990 .

[57]  Wenjun Ying,et al.  An Ionically Based Mapping Model with Memory for Cardiac Restitution , 2007, Bulletin of mathematical biology.

[58]  C. Henriquez,et al.  Paced Activation Mapping Reveals Organization of Myocardial Fibers: , 1997, Journal of cardiovascular electrophysiology.

[59]  V. Simoncini,et al.  Efficient algebraic solution of reaction-diffusion systems for the cardiac excitation process , 2002 .

[60]  P. Moore Finite Difference Methods and Spatial A Posteriori Error Estimates for Solving Parabolic Equations in Three Space Dimensions on Grids with Irregular Nodes , 1999 .

[61]  J. Trangenstein,et al.  Operator splitting and adaptive mesh refinement for the Luo-Rudy I model , 2004 .

[62]  J. Hansen,et al.  Review of some adaptive node-movement techniques in finite-element and finite-difference solutions of partial differential equations , 1991 .

[63]  R. Bank,et al.  Some Refinement Algorithms And Data Structures For Regular Local Mesh Refinement , 1983 .

[64]  W. Dahmen,et al.  Multilevel preconditioning , 1992 .

[65]  Pingwen Zhang,et al.  Moving mesh methods in multiple dimensions based on harmonic maps , 2001 .

[66]  Weizhang Huang,et al.  Moving mesh partial differential equations (MMPDES) based on the equidistribution principle , 1994 .

[67]  Joseph E. Pasciak,et al.  THE ANALYSIS OF SMOOTHERS FOR MULTIGRID ALGORITHMS , 1992 .

[68]  Shi Jin Runge-Kutta Methods for Hyperbolic Conservation Laws with Stiff Relaxation Terms , 1995 .

[69]  Ami Harten,et al.  Self adjusting grid methods for one-dimensional hyperbolic conservation laws☆ , 1983 .

[70]  N. Britton Reaction-diffusion equations and their applications to biology. , 1989 .

[71]  G. W. Beeler,et al.  Reconstruction of the action potential of ventricular myocardial fibres , 1977, The Journal of physiology.

[72]  P. Vassilevski,et al.  Local refinement techniques for elliptic problems on cell-centered grids , 1991 .

[73]  B. Sportisse An Analysis of Operator Splitting Techniques in the Stiff Case , 2000 .

[74]  Natalia A. Trayanova,et al.  Computational techniques for solving the bidomain equations in three dimensions , 2002, IEEE Transactions on Biomedical Engineering.

[75]  J. Smoller Shock Waves and Reaction-Diffusion Equations , 1983 .

[76]  N. N. Yanenko Application of the Method of Fractional Steps to Boundary Value Problems for Laplace’s and Poisson’s Equations , 1971 .

[77]  Ernst Hairer,et al.  Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .

[78]  P. Woodward,et al.  The numerical simulation of two-dimensional fluid flow with strong shocks , 1984 .

[79]  Jinchao Xu The method of subspace corrections , 2001 .

[80]  Peter J. H. King,et al.  Using Space-Filling Curves for Multi-dimensional Indexing , 2000, BNCOD.

[81]  F. Fenton,et al.  Vortex dynamics in three-dimensional continuous myocardium with fiber rotation: Filament instability and fibrillation. , 1998, Chaos.

[82]  Marc Courtemanche,et al.  RE-ENTRANT ROTATING WAVES IN A BEELER–REUTER BASED MODEL OF TWO-DIMENSIONAL CARDIAC ELECTRICAL ACTIVITY , 1991 .

[83]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[84]  Micol Pennacchio,et al.  The Mortar Finite Element Method for the Cardiac “Bidomain” Model of Extracellular Potential , 2004, J. Sci. Comput..

[85]  M. Minion,et al.  Accurate projection methods for the incompressible Navier—Stokes equations , 2001 .

[86]  Barry F. Smith,et al.  Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations , 1996 .

[87]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[88]  Arun V. Holden,et al.  Computational biology of the heart , 1998, The Mathematical Gazette.

[89]  I. Babuska,et al.  The finite element method and its reliability , 2001 .

[90]  Joseph E. Flaherty,et al.  Adaptive Methods for Partial Differential Equations , 1989 .

[91]  N. Hooke Efficient simulation of action potential propagation in a bidomain , 1992 .

[92]  J. Keener,et al.  A numerical method for the solution of the bidomain equations in cardiac tissue. , 1998, Chaos.

[93]  Daniel J. Quinlan,et al.  An Object-Oriented Approach for Parallel Self Adaptive Mesh Refinement on Block Structured Grids , 1994 .

[94]  Arthur R. Butz,et al.  Space Filling Curves and Mathematical Programming , 1968, Inf. Control..

[95]  Joseph E. Flaherty,et al.  A moving finite element method with error estimation and refinement for one-dimensional time dependent partial differential equations , 1986 .

[96]  D. Schaeffer,et al.  A two-current model for the dynamics of cardiac membrane , 2003, Bulletin of mathematical biology.

[97]  S. Popinet Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries , 2003 .

[98]  P. Wesseling An Introduction to Multigrid Methods , 1992 .

[99]  F. J. Jacobs,et al.  Adaptive local grid refinement and multi-grid in numerical reservoir simulation , 1988 .

[100]  Peter Hansbo,et al.  A Lagrange multiplier method for the finite element solution of elliptic interface problems using non-matching meshes , 2005, Numerische Mathematik.

[101]  C. Luo,et al.  A model of the ventricular cardiac action potential. Depolarization, repolarization, and their interaction. , 1991, Circulation research.

[102]  M. Minion Semi-implicit spectral deferred correction methods for ordinary differential equations , 2003 .

[103]  David B. Geselowitz,et al.  A bidomain model for anisotropic cardiac muscle , 2006, Annals of Biomedical Engineering.

[104]  G. Bouchitté,et al.  Singular perturbations of variational problems arising from a two-phase transition model , 1990 .

[105]  L. Shampine,et al.  Numerical Solution of Ordinary Differential Equations. , 1995 .

[106]  J. Pasciak,et al.  New convergence estimates for multigrid algorithms , 1987 .

[107]  Jinchao Xu,et al.  Iterative Methods by Space Decomposition and Subspace Correction , 1992, SIAM Rev..

[108]  Peter Grindrod,et al.  Patterns and Waves: The Theory and Applications of Reaction-Diffusion Equations , 1991 .

[109]  Elizabeth M Cherry,et al.  Efficient simulation of three-dimensional anisotropic cardiac tissue using an adaptive mesh refinement method. , 2003, Chaos.

[110]  John B. Bell,et al.  A Cartesian Grid Projection Method for the Incompressible Euler Equations in Complex Geometries , 1994, SIAM J. Sci. Comput..

[111]  Tien D. Bui,et al.  Rosenbrock methods for Stiff ODEs: A comparison of Richardson extrapolation and embedding technique , 1985, Computing.

[112]  R. LeVeque,et al.  A comparison of the extended finite element method with the immersed interface method for elliptic equations with discontinuous coefficients and singular sources , 2006 .

[113]  John A. Trangenstein,et al.  Adaptive Mesh Refinement for Wave Propagation in Nonlinear Solids , 1995, SIAM J. Sci. Comput..

[114]  Timothy J. Baker,et al.  Mesh adaptation strategies for problems in fluid dynamics , 1997 .

[115]  Harry Yserentant,et al.  A basic norm equivalence for the theory of multilevel methods , 1993 .

[116]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[117]  Willem Hundsdorfer,et al.  A note on splitting errors for advection-reaction equations , 1995 .

[118]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1990 .

[119]  J. Trangenstein,et al.  Operator Splitting and Adaptive Mesh Reenement for the Fitzhugh-nagumo Problem , 2000 .

[120]  B. Roth Mechanisms for electrical stimulation of excitable tissue. , 1994, Critical reviews in biomedical engineering.

[121]  A. Booth Numerical Methods , 1957, Nature.

[122]  G. Strang On the Construction and Comparison of Difference Schemes , 1968 .

[123]  B. Taccardi,et al.  Spread of excitation in 3-D models of the anisotropic cardiac tissue. II. Effects of fiber architecture and ventricular geometry. , 1998, Mathematical biosciences.

[124]  J.P. Barach A simulation of cardiac action currents having curl , 1993, IEEE Transactions on Biomedical Engineering.

[125]  A. Garfinkel,et al.  An advanced algorithm for solving partial differential equation in cardiac conduction , 1999, IEEE Transactions on Biomedical Engineering.

[126]  R. FitzHugh Impulses and Physiological States in Theoretical Models of Nerve Membrane. , 1961, Biophysical journal.

[127]  Jinchao Xu,et al.  Convergence estimates for multigrid algorithms without regularity assumptions , 1991 .

[128]  J. Lambert Numerical Methods for Ordinary Differential Systems: The Initial Value Problem , 1991 .

[129]  Charles S. Peskin,et al.  Fiber architecture of the left ventricular wall: An asymptotic analysis , 1989 .

[130]  S. McCormick,et al.  The fast adaptive composite grid (FAC) method for elliptic equation , 1986 .

[131]  Shengtai Li,et al.  Stability of Moving Mesh Systems of Partial Differential Equations , 1998, SIAM J. Sci. Comput..

[132]  Ernst Rank,et al.  The p‐version of the finite element method for domains with corners and for infinite domains , 1990 .

[133]  J. Tinsley Oden,et al.  An h-r-Adaptive Approximate Riemann Solver for the Euler Equations in Two Dimensions , 1993, SIAM J. Sci. Comput..

[134]  Ricardo H. Nochetto,et al.  Elliptic reconstruction and a posteriori error estimates for fully discrete linear parabolic problems , 2006, Math. Comput..

[135]  M. Berger,et al.  Adaptive mesh refinement for hyperbolic partial differential equations , 1982 .

[136]  Bradley J. Roth,et al.  Cardiac tissue in an electric field: a study in electrical stimulation , 1992, Proceedings Computers in Cardiology.

[137]  Wolfgang Hackbusch,et al.  Multi-grid methods and applications , 1985, Springer series in computational mathematics.

[138]  I. Babuska,et al.  ON THE ANGLE CONDITION IN THE FINITE ELEMENT METHOD , 1976 .

[139]  John A. Trangenstein,et al.  Front Tracking for Shear Bands in an Antiplane Shear Model , 1997 .

[140]  Joe F. Thompson A survey of dynamically-adaptive grids in the numerical solution of partial differential equations , 1984 .

[141]  John A. Board,et al.  A modular simulation system for the bidomain equations , 1999 .

[142]  P. Deuflhard,et al.  The cascadic multigrid method for elliptic problems , 1996 .

[143]  Donald J. Rose,et al.  Computer Simulations of Cardiac Electrophysiology , 2000, ACM/IEEE SC 2000 Conference (SC'00).

[144]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[145]  W. Hackbusch,et al.  A New Convergence Proof for the Multigrid Method Including the V-Cycle , 1983 .

[146]  Joseph E. Pasciak,et al.  On the stability of the L2 projection in H1(Omega) , 2002, Math. Comput..

[147]  R. LeVeque,et al.  Adaptive Mesh Refinement Using Wave-Propagation Algorithms for Hyperbolic Systems , 1998 .

[148]  Kevin Burrage,et al.  A special family of Runge-Kutta methods for solving stiff differential equations , 1978 .

[149]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .

[150]  W. Rheinboldt,et al.  Error Estimates for Adaptive Finite Element Computations , 1978 .

[151]  Graham F. Carey,et al.  Efficient simulation of complex patterns in reaction-diffusion systems , 1996 .

[152]  Weilun Quan,et al.  Efficient integration of a realistic two-dimensional cardiac tissue model by domain decomposition , 1998, IEEE Transactions on Biomedical Engineering.