Scalable platform for adaptive optics real-time control, part 1: concept, architecture, and validation

Abstract. We demonstrate an architecture for adaptive optics (AO) control based on field programmable gate arrays (FPGAs), making active use of their configurable parallel processing capability. The unique capabilities of scalable platform for adaptive optics real-time control (SPARC) are demonstrated through an implementation on an off-the-shelf inexpensive Xilinx VC-709 development board. The architecture makes SPARC a generic and powerful real-time control kernel for a broad spectrum of AO scenarios. SPARC is scalable across different numbers of subapertures and pixels per subaperture. The overall concept, objectives, architecture, validation, and results from simulation as well as hardware tests are presented here. For Shack–Hartmann wavefront sensors, the total AO reconstruction time ranges from a median of 39.4  μs (11  ×  11 subapertures) to 1.283 ms (50  ×  50 subapertures) on the development board. For large wavefront sensors, the latency is dominated by access time (∼1  ms) of the standard dual data rate memory available on the board. This paper is divided into two parts. Part 1 is targeted at astronomers interested in the capability of the current hardware. Part 2 explains the FPGA implementation of the wavefront processing unit, the reconstruction algorithm, and the hardware interfaces of the platform. Part 2 mainly targets the embedded developers interested in the hardware implementation of SPARC.

[1]  P. Wizinowich,et al.  W. M. Keck Observatory's next-generation adaptive optics facility , 2008, Astronomical Telescopes + Instrumentation.

[2]  Michael Hart,et al.  The GMT adaptive optics system , 2010, Astronomical Telescopes + Instrumentation.

[3]  J. Herrmann,et al.  Least-squares wave front errors of minimum norm , 1980 .

[4]  D. Rouan,et al.  Performance of the Canada‐France‐Hawaii Telescope Adaptive Optics Bonnette , 1998 .

[5]  C. Baranec,et al.  Robo-AO: autonomous and replicable laser-adaptive-optics and science system , 2012, Other Conferences.

[6]  Andrei Tokovinin,et al.  Seeing Improvement with Ground‐Layer Adaptive Optics , 2004 .

[7]  Christoph Baranec,et al.  The Performance of the Robo-AO Laser Guide Star Adaptive Optics System at the Kitt Peak 2.1-m Telescope , 2017 .

[8]  Peter L. Wizinowich,et al.  Laser guide star facility developments at W. M. Keck Observatory , 2014, Astronomical Telescopes and Instrumentation.

[9]  Donald Gavel,et al.  Adaptive optics for the Thirty Meter Telescope , 2005, SPIE Optics + Photonics.

[10]  Gerard Rousset,et al.  Status of the VLT Nasmyth adaptive optics system (NAOS) , 2000, Astronomical Telescopes and Instrumentation.

[11]  Roberto Ragazzoni,et al.  A preliminary overview of the multiconjugate adaptive optics module for the E-ELT , 2008, Astronomical Telescopes + Instrumentation.

[12]  Donald T. Gavel,et al.  Image improvement from a sodium-layer laser guide star adaptive optics system , 1997 .

[13]  Tyson Hare,et al.  MagAO: Status and on-sky performance of the Magellan adaptive optics system , 2014, Astronomical Telescopes and Instrumentation.

[14]  Marcos A. van Dam,et al.  Wide field adaptive optics correction for the GMT using natural guide stars , 2014, Astronomical Telescopes and Instrumentation.

[15]  Charles P. Cavedoni,et al.  Gemini multiconjugate adaptive optics system review - I. Design, trade-offs and integration , 2013, 1310.6199.

[16]  Giorgio Sedmak,et al.  Implementation of fast-Fourier-transform-based simulations of extra-large atmospheric phase and scintillation screens. , 2004, Applied optics.

[17]  Brian J. Bauman,et al.  Recent science and engineering results with the laser guidestar adaptive optic system at Lick Observatory , 2003, SPIE Astronomical Telescopes + Instrumentation.

[18]  Kjetil Dohlen,et al.  SPHERE: a planet finder instrument for the VLT , 2006, Astronomical Telescopes + Instrumentation.

[19]  A. Sevin,et al.  Enabling technologies for GPU driven adaptive optics real-time control , 2014, Astronomical Telescopes and Instrumentation.

[20]  Padmakar Parihar,et al.  Scalable platform for adaptive optics real-time control, part 2: field programmable gate array implementation and performance , 2018 .

[21]  Avinash Surendran,et al.  Development of a scalable generic platform for adaptive optics real time control , 2015, Other Conferences.

[22]  Olivier Guyon,et al.  Performance of Subaru adaptive optics system AO188 , 2010, Astronomical Telescopes + Instrumentation.

[23]  C. Baranec,et al.  PALM-3000: EXOPLANET ADAPTIVE OPTICS FOR THE 5 m HALE TELESCOPE , 2013, 1309.1216.

[24]  Douglas M. Summers,et al.  The W. M. Keck Observatory Laser Guide Star Adaptive Optics System: Overview , 2006 .

[25]  Jean-Pierre Véran,et al.  NFIRAOS: first facility AO system for the Thirty Meter Telescope , 2014, Astronomical Telescopes and Instrumentation.