Controlling Scattering and Absorption With Metamaterial Covers

We discuss the use of metasurfaces and plasmonic metamaterials to minimize the scattering from receiving antennas and sensors, with the goal of maximizing their absorption efficiency. We first analytically study and highlight the potential of these approaches to realize optimized sensors with the desired level of efficiency, being able to minimize the electrical presence of a receiving antenna for a chosen level of overall absorption. Realistic cloak designs, investigated using full-wave simulations, verify the behavior analytically predicted by Mie theory. These optimized cloaks offer a practical way to flexibly tailor the scattering of receiving antennas, with great benefits in the design and optimization of near-field sensors, remote communication systems, spoof targets and improved antenna blockage resiliency. Optimized covers may also provide other interesting features for the same receiving antenna by just tuning its resistive load, such as optimal wireless power harvesting or high-to-low tunable absorption efficiency.

[1]  R. Harrington Theory of loaded scatterers , 1964 .

[2]  M. Gustafsson,et al.  Forward Scattering of Loaded and Unloaded Antennas , 2012, IEEE Transactions on Antennas and Propagation.

[3]  R. Green,et al.  Scattering from conjugate-matched antennas , 1966 .

[4]  A. Alú,et al.  Analytical modeling of conformal mantle cloaks for cylindrical objects using sub-wavelength printed and slotted arrays , 2012 .

[5]  Lluis Jofre,et al.  Electromagnetic Modeling of RFID-Modulated Scattering Mechanism. Application to Tag Performance Evaluation , 2010, Proceedings of the IEEE.

[6]  U. Chettiar,et al.  An invisible metal–semiconductor photodetector , 2012, Nature Photonics.

[7]  A. Monti,et al.  Metasurface mantle cloak for antenna applications , 2012, Proceedings of the 2012 IEEE International Symposium on Antennas and Propagation.

[8]  A. Alú,et al.  Mantle cloak: Invisibility induced by a surface , 2009 .

[9]  R. Fleury,et al.  Cloaking and invisibility: A review , 2014 .

[10]  R. Hansen Relationships between antennas as scatterers and as radiators , 1989, Proc. IEEE.

[11]  Sergei A. Tretyakov,et al.  Experimental demonstration of antenna blockage reduction with a transmission-line cloak , 2012 .

[12]  Sergei A. Tretyakov,et al.  An analytical model of metamaterials based on loaded wire dipoles , 2003 .

[13]  P. Blacksmith,et al.  The control of electromagnetic scattering by impedance loading , 1965 .

[14]  A. Alú,et al.  Mantle cloaking using thin patterned metasurfaces , 2011 .

[15]  Michael J. Steel,et al.  Invisibility and supervisibility: Radiation dynamics in a discrete electromagnetic cloak , 2013 .

[16]  Andrea Alù,et al.  Minimum-scattering superabsorbers , 2014 .

[17]  Constantinos A. Valagiannopoulos A miniature inhomogeneous cloak following a power law , 2013 .

[18]  W. Steen Absorption and Scattering of Light by Small Particles , 1999 .

[19]  N. Engheta,et al.  Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials. , 2009, Physical review letters.

[20]  Romain Fleury,et al.  Furtive quantum sensing using matter-wave cloaks , 2013 .

[21]  H. Kurss,et al.  Minimum-scattering antennas , 1965 .

[22]  Jin Au Kong,et al.  Extraordinary surface voltage effect in the invisibility cloak with an active device inside. , 2007, Physical review letters.

[23]  Matteo Pastorino,et al.  On the relationship for the bistatic modulated scattering technique in scattering applications using scattering properties of antennas , 1998 .

[24]  A. T. de Hoop Theorem on the maximum absorption of electromagnetic radiation by a scattering object of bounded extent , 1981 .

[25]  M. Fink,et al.  Controlling light in scattering media non-invasively using the photoacoustic transmission matrix , 2013, 1305.6246.

[26]  Ahmed A. Kishk,et al.  Reduction of forward scattering from cylindrical objects using hard surfaces , 1996 .

[27]  N. Tsitsas,et al.  Integral equation analysis of a low‐profile receiving planar microstrip antenna with a cloaking superstrate , 2012 .

[28]  Jason Soric,et al.  Experimental Verification of Three-Dimensional Plasmonic Cloaking in Free-Space , 2012 .

[29]  N. Engheta,et al.  Cloaking a receiving antenna or a sensor with plasmonic metamaterials , 2010 .

[30]  D. Werner,et al.  Restoration of antenna parameters in scattering environments using electromagnetic cloaking , 2008 .

[31]  Jason Soric,et al.  Physical bounds on absorption and scattering for cloaked sensors , 2014 .

[32]  Andrea Alu,et al.  Power Relations and a Consistent Analytical Model for Receiving Wire Antennas , 2010, IEEE Transactions on Antennas and Propagation.

[33]  J.B. Andersen,et al.  Absorption efficiency of receiving antennas , 2005, IEEE Transactions on Antennas and Propagation.

[34]  C. Balanis Antenna theory , 1982 .

[35]  Andrea Alù,et al.  Exotic properties and potential applications of quantum metamaterials , 2012 .

[36]  Yong Li,et al.  Scattering reduction for an acoustic sensor using a multilayered shell comprising a pair of homogeneous isotropic single-negative media , 2012 .

[37]  C. Balanis Advanced Engineering Electromagnetics , 1989 .

[38]  A. O. Karilainen,et al.  Circularly Polarized Receiving Antenna Incorporating Two Helices to Achieve Low Backscattering , 2012, IEEE Transactions on Antennas and Propagation.

[39]  R. Zoughi,et al.  Multiple Loaded Scatterer Method for E-Field Mapping Applications , 2010, IEEE Transactions on Antennas and Propagation.

[40]  R. Fleury,et al.  Quantum cloaking based on scattering cancellation , 2013 .

[41]  M. Gustafsson,et al.  Illustrations of New Physical Bounds on Linearly Polarized Antennas , 2009, IEEE Transactions on Antennas and Propagation.

[42]  A. Monti,et al.  Overcoming Mutual Blockage Between Neighboring Dipole Antennas Using a Low-Profile Patterned Metasurface , 2012, IEEE Antennas and Wireless Propagation Letters.

[43]  Huanyang Chen,et al.  The anti-cloak. , 2008, Optics express.

[44]  N. Engheta,et al.  Cloaking a sensor. , 2009, Physical review letters.

[45]  N. Engheta,et al.  Cloak/anti-cloak interactions. , 2009, Optics express.

[46]  N. Engheta,et al.  Plasmonic materials in transparency and cloaking problems: mechanism, robustness, and physical insights. , 2007, Optics express.

[47]  Andrea Alù,et al.  Demonstration of an ultralow profile cloak for scattering suppression of a finite-length rod in free space , 2013 .

[48]  Y. Demers,et al.  Performance Improvements of Center-Fed Reflector Antennas Using Low Scattering Struts , 2012, IEEE Transactions on Antennas and Propagation.

[49]  S. Maci,et al.  Omnidirectional Metamaterial Antennas Based on $\varepsilon$-Near-Zero Channel Matching , 2013, IEEE Transactions on Antennas and Propagation.

[50]  Jeffrey H. Harris,et al.  Application of plasma columns to radiofrequency antennas , 1999 .

[51]  F. Bilotti,et al.  Cloaking apertureless near-field scanning optical microscopy tips. , 2011, Optics letters.

[52]  N. Engheta,et al.  Achieving transparency with plasmonic and metamaterial coatings. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[53]  Do-Hoon Kwon Design of received and scattered powers for dipole arrays using load optimization , 2010, 2010 IEEE Antennas and Propagation Society International Symposium.

[54]  Andrea Alù,et al.  How does zero forward-scattering in magnetodielectric nanoparticles comply with the optical theorem? , 2010 .

[55]  N. Engheta,et al.  Cloaked near-field scanning optical microscope tip for noninvasive near-field imaging. , 2010, Physical review letters.

[56]  D. Kwon,et al.  Optimal Characteristics of an Arbitrary Receive Antenna , 2009, IEEE Transactions on Antennas and Propagation.

[57]  S. Tretyakov Analytical Modeling in Applied Electromagnetics , 2003 .