Low melting point liquid metal as a new class of phase change material: An emerging frontier in energy area

The application of phase change materials (PCMs) grew rapidly in the last few years, especially in those areas like solar energy, thermal comfort control, green building, environmental conservation and electronic cooling etc. Tremendous efforts have therefore been made on finding new powerful PCMs or improving performance of the currently available PCMs which generally subject to inherent defects, such as low thermal conductivity, poor stability after millions of repeated solidifying and melting processes, easy phase separation during transition and narrow temperature span between the melting point and the evaporation state. To better serve for the stringent request from many emerging utilization situations, this article is dedicated to systematically present a new class of high performance PCM, the low melting point liquid metals or their alloys, which were seldom addressed before. The unique merits, application features and potential values of these highly conductive liquid like materials were summarized with their basic properties interpreted. Some latest advancement made in the area was discussed for illustration purpose. Comparative evaluation on the fundamental mechanisms and practical issues between conventional PCMs and the low melting point metal PCM was carried out. Further, some involved scientific and technical challenges were raised. The present work is expected to incubate an emerging frontier towards studying and utilizing metal PCMs in the coming time, which is rather useful for a broad range of energy areas.

[1]  Subrata Mondal,et al.  Phase change materials for smart textiles – An overview , 2008 .

[2]  Luisa F. Cabeza,et al.  State of the art on high temperature thermal energy storage for power generation. Part 1—Concepts, materials and modellization , 2010 .

[3]  Nceku Nyathi,et al.  Part 2 Case Studies , 2011 .

[4]  R. Tamme,et al.  Thermal Conductivity of High-Temperature Multicomponent Materials with Phase Change , 2008 .

[5]  Atul Sharma,et al.  Solar cooker with latent heat storage systems: A review , 2009 .

[6]  B. J. Brinkworth,et al.  The storage of low grade thermal energy using phase change materials , 1976 .

[7]  Jing Liu,et al.  Keeping Smartphones Cool With Gallium Phase Change Material , 2013 .

[8]  Ingvar Holmér,et al.  Cooling vests with phase change materials: the effects of melting temperature on heat strain alleviation in an extremely hot environment , 2011, European Journal of Applied Physiology.

[9]  Francis Agyenim,et al.  A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS) , 2010 .

[10]  S. Bourbigot,et al.  Thermoregulating response of cotton fabric containing microencapsulated phase change materials , 2010 .

[11]  X. Py,et al.  Elaboration of Conductive Thermal Storage Composites Made of Phase Change Materials and Graphite for Solar Plant , 2008 .

[12]  Ibrahim Dincer,et al.  Heat transfer and thermal management of electric vehicle batteries with phase change materials , 2011 .

[13]  Wojciech M. Budzianowski,et al.  The expansion of biogas fuelled power plants in Germany during the 2001-2010 decade: Main sustainable conclusions for Poland , 2011 .

[14]  Xin Wang,et al.  Experimental research on a kind of novel high temperature phase change storage heater , 2006 .

[15]  Randy D. Weinstein,et al.  Transient Thermal Management of a Handset Using Phase Change Material (PCM) , 2002 .

[16]  K. Siow,et al.  Thermal performance of a phase change material on a nickel-plated surface , 2004 .

[17]  Pramod B. Salunkhe,et al.  A review on effect of phase change material encapsulation on the thermal performance of a system , 2012 .

[18]  A. Sari,et al.  Fatty acid esters-based composite phase change materials for thermal energy storage in buildings , 2012 .

[19]  Metin Gumus,et al.  Application of phase change materials to pre-heating of evaporator and pressure regulator of a gaseous sequential injection system , 2011 .

[20]  Stefano Piva,et al.  Experimental and numerical investigation of the steady periodic solid–liquid phase-change heat transfer , 2002 .

[21]  D. Kearney,et al.  Assessment of a Molten Salt Heat Transfer Fluid in a Parabolic Trough Solar Field , 2003 .

[22]  V. V. Tyagi,et al.  PCM thermal storage in buildings: A state of art , 2007 .

[23]  Khamid Mahkamov,et al.  Solar energy storage using phase change materials , 2007 .

[24]  A. D. Solomon,et al.  Mathematical Modeling Of Melting And Freezing Processes , 1992 .

[25]  Zhishen Wu,et al.  A review of intercalation composite phase change material: Preparation, structure and properties , 2012 .

[26]  R. Wirtz,et al.  Thermal management using "dry" phase change material , 1999, Fifteenth Annual IEEE Semiconductor Thermal Measurement and Management Symposium (Cat. No.99CH36306).

[27]  Luisa F. Cabeza,et al.  State of the art on high-temperature thermal energy storage for power generation. Part 2--Case studies , 2010 .

[28]  S. C. Solanki,et al.  Latent heat thermal energy storage using cylindrical capsule: Numerical and experimental investigations , 2006 .

[29]  M. Kenisarin High-temperature phase change materials for thermal energy storage , 2010 .

[30]  S. Iniyan,et al.  Phase change characteristic study of spherical PCMs in solar energy storage , 2009 .

[31]  Lingai Luo,et al.  A review on long-term sorption solar energy storage , 2009 .

[32]  Jiang Yi,et al.  Modeling and experimental study on an innovative passive cooling system—NVP system , 2003 .

[33]  Yi Li,et al.  Effect of Phase Change Materials on Temperature and Moisture Distributions in Clothing during Exercise in Cold Environment , 2008 .

[34]  P. Sánchez,et al.  Development of thermo-regulating textiles using paraffin wax microcapsules , 2010 .

[35]  Murat Kenisarin,et al.  Form-stable phase change materials for thermal energy storage , 2012 .

[36]  Cristina H. Amon,et al.  PCM thermal control unit for portable electronic devices: experimental and numerical studies , 2003 .

[37]  Jing Liu,et al.  A liquid metal cooling system for the thermal management of high power LEDs , 2010 .

[38]  Shan Hu,et al.  The experimental exploration of carbon nanofiber and carbon nanotube additives on thermal behavior of phase change materials , 2011 .

[39]  H. Paksoy,et al.  Thermal Energy Storage for Sustainable Energy Consumption , 2007 .

[40]  Tarik Kousksou,et al.  Second law analysis of latent thermal storage for solar system , 2007 .

[41]  S. Krishnan,et al.  A novel hybrid heat sink using phase change materials for transient thermal management of electronics , 2005, IEEE Transactions on Components and Packaging Technologies.

[42]  Takahiro Nomura,et al.  Technology of Latent Heat Storage for High Temperature Application: A Review , 2010 .

[43]  S. C. Solanki,et al.  Heat transfer characteristics of thermal energy storage system using PCM capsules: A review , 2008 .

[44]  Kalev Kuklane,et al.  Cooling vests with phase change material packs: the effects of temperature gradient, mass and covering area , 2010, Ergonomics.

[45]  Liwu Fan,et al.  Thermal conductivity enhancement of phase change materials for thermal energy storage: A review , 2011 .

[46]  Arun S. Mujumdar,et al.  Effect of orientation for phase change material (PCM)-based heat sinks for transient thermal management of electric components , 2007 .

[47]  Tian Jian Lu,et al.  Thermal management of high power electronics with phase change cooling , 2000 .

[48]  K. Sagara,et al.  Latent Heat Storage Materials and Systems: A Review , 2005 .

[49]  Rainer Tamme,et al.  PCM-Graphite Composites for High Temperature Thermal Energy Storage , 2006 .

[50]  Luisa F. Cabeza,et al.  Review on thermal energy storage with phase change: materials, heat transfer analysis and applications , 2003 .

[51]  Hongfa Di,et al.  Application of latent heat thermal energy storage in buildings: State-of-the-art and outlook , 2007 .

[52]  Jingcang Su,et al.  A novel solid–solid phase change heat storage material with polyurethane block copolymer structure , 2006 .

[53]  Jing Liu,et al.  Corrosion development between liquid gallium and four typical metal substrates used in chip cooling device , 2009 .

[54]  H. Inaba,et al.  Evaluation of thermophysical characteristics on shape-stabilized paraffin as a solid-liquid phase change material , 1997 .

[55]  Zia Ud Din,et al.  Phase change material (PCM) storage for free cooling of buildings—A review , 2013 .

[56]  A. Sari,et al.  Thermal Performance of a Eutectic Mixture of Lauric and Stearic Acids as PCM Encapsulated in the Annulus of Two Concentric Pipes , 2002 .

[57]  Nobuhiro Maruoka,et al.  Exergy recovery from steelmaking off-gas by latent heat storage for methanol production , 2006 .

[58]  Xin Wang,et al.  Review on thermal performance of phase change energy storage building envelope , 2009 .

[59]  Wang Shing-an An experimental study of corrugated steel sheet solar water heater , 1979 .

[60]  H. Wrzosek,et al.  Experimental Study of the Thermoregulating Properties of Nonwovens Treated with Microencapsulated PCM , 2009 .

[61]  X. Tao,et al.  Crystallization and prevention of supercooling of microencapsulated n-alkanes. , 2005, Journal of colloid and interface science.

[62]  Jing Liu,et al.  Nano liquid-metal fluid as ultimate coolant , 2007 .

[63]  Yue-Tzu Yang,et al.  Numerical simulation of three-dimensional transient cooling application on a portable electronic device using phase change material , 2012 .

[64]  Esam M. Alawadhi,et al.  Building roof with conical holes containing PCM to reduce the cooling load: Numerical study , 2011 .

[65]  A. Sari,et al.  Preparation, thermal properties and thermal reliability of microencapsulated n-eicosane as novel phase change material for thermal energy storage , 2011 .

[66]  Guiyin Fang,et al.  Preparation and heat transfer characteristics of microencapsulated phase change material slurry: A review , 2011 .

[67]  Bo Carlsson,et al.  An incongruent heat-of-fusion system—CaCl2·6H2O—Made congruent through modification of the chemical composition of the system , 1979 .

[68]  Zhiwei Ma,et al.  An overview of fundamental studies and applications of phase change material slurries to secondary loop refrigeration and air conditioning systems , 2012 .

[69]  A. Sharma,et al.  Review on thermal energy storage with phase change materials and applications , 2009 .

[70]  Masayoshi Yabe,et al.  Relaxation of Supercooling of Erythritol for Latent Heat Storage , 2001 .

[71]  Sai Cheong Fok,et al.  Experimental studies on the use of a phase change material for cooling mobile phones , 2010 .

[72]  Zhonghao Rao,et al.  Energy saving latent heat storage and environmental friendly humidity-controlled materials for indoor climate , 2012 .

[73]  Kibum Kim,et al.  Feasibility study on a novel cooling technique using a phase change material in an automotive engine , 2010 .

[74]  Wojciech M. Budzianowski,et al.  Sustainable biogas energy in Poland: Prospects and challenges , 2012 .

[75]  F. Tan,et al.  Cooling of portable hand-held electronic devices using phase change materials in finned heat sinks , 2010 .

[76]  Kamil Kaygusuz,et al.  Encapsulated Fatty Acids in an Acrylic Resin as Shape-stabilized Phase Change Materials for Latent Heat Thermal Energy Storage , 2008 .

[77]  Suresh V. Garimella,et al.  Thermal analysis of solar thermal energy storage in a molten-salt thermocline , 2010 .

[78]  Yogendra Joshi,et al.  Application of Phase Change Materials to Thermal Control of Electronic Modules: A Computational Study , 1997 .

[79]  Deepak Gupta,et al.  Phase Change Materials: Technology Status and Potential Defence Applications (Review Papers) , 2011 .

[80]  G. Nelson Microencapsulation in textile finishing , 2008 .

[81]  Bogdan Diaconu,et al.  Experimental assessment of heat storage properties and heat transfer characteristics of a phase change material slurry for air conditioning applications , 2010 .

[82]  Yongping Yang,et al.  Performance of shape-stabilized phase change material wallboard with periodical outside heat flux waves , 2011 .

[83]  D. G. Archer The Enthalpy of Fusion of Gallium , 2002 .

[84]  L. Drzal,et al.  High latent heat storage and high thermal conductive phase change materials using exfoliated graphite nanoplatelets , 2009 .

[85]  Arild Gustavsen,et al.  Phase Change Materials for Building Applications: A State-of-the-Art Review , 2010 .

[86]  Wojciech M. Budzianowski,et al.  Low-carbon power generation cycles: The feasibility of CO2 capture and opportunities for integration , 2011 .

[87]  Ingvar Holmér,et al.  A Review of Technology of Personal Heating Garments , 2010, International journal of occupational safety and ergonomics : JOSE.

[88]  Maciej Jaworski,et al.  Thermal performance of heat spreader for electronics cooling with incorporated phase change material , 2012 .

[89]  Arun S. Mujumdar,et al.  Transient cooling of electronics using phase change material (PCM)-based heat sinks , 2008 .

[90]  Jing Liu,et al.  Harvesting low grade heat to generate electricity with thermosyphon effect of room temperature liquid metal , 2011 .

[91]  P. Zhang,et al.  Thermal property measurement and heat transfer analysis of acetamide and acetamide/expanded graphite composite phase change material for solar heat storage , 2011 .

[92]  Xu Xu,et al.  Modeling and simulation of under-floor electric heating system with shape-stabilized PCM plates , 2004 .

[93]  M. K. Rathod,et al.  Thermal stability of phase change materials used in latent heat energy storage systems: A review , 2013 .

[94]  Nasrudin Abd Rahim,et al.  Review of PCM based cooling technologies for buildings , 2012 .

[95]  S. D. Sharma,et al.  Thermal performance of a solar cooker based on an evacuated tube solar collector with a PCM storage unit , 2005 .

[96]  Arun S. Mujumdar,et al.  A parametric study of phase change material (PCM)-based heat sinks , 2008 .

[97]  F. L. Tan,et al.  Cooling of mobile electronic devices using phase change materials , 2004 .

[98]  R. Velraj,et al.  Review on free cooling of buildings using phase change materials , 2010 .

[99]  D. J. Close,et al.  Packed Bed Thermal Storage Models for Solar Air Heating and Cooling Systems , 1976 .

[100]  A.L.S. Chan,et al.  Energy and environmental performance of building façades integrated with phase change material in subtropical Hong Kong , 2011 .

[101]  Luisa F. Cabeza,et al.  Review on phase change materials (PCMs) for cold thermal energy storage applications , 2012 .

[102]  Y. Joshi,et al.  Energy efficient thermal management of electronic components using solid-liquid phase change materials , 2004, IEEE Transactions on Device and Materials Reliability.

[103]  Effect of Ultrasonic Irradiation Parameters on the Supercooling Relaxation Behavior of PCM , 2003 .

[104]  S. C. Kaushik,et al.  DEVELOPMENT OF PHASE CHANGE MATERIALS BASED MICROENCAPSULATED TECHNOLOGY FOR BUILDINGS: A REVIEW , 2011 .

[105]  A. Abhat Low temperature latent heat thermal energy storage: Heat storage materials , 1983 .

[106]  D. Biswas,et al.  Thermal energy storage using sodium sulfate decahydrate and water , 1977 .

[107]  Sašo Medved,et al.  Free cooling of a building using PCM heat storage integrated into the ventilation system , 2007 .

[108]  Ruzhu Wang,et al.  An overview of phase change material slurries: MPCS and CHS , 2010 .

[109]  A. Fleischer,et al.  The shape stabilization of paraffin phase change material to reduce graphite nanofiber settling during the phase change process , 2012 .

[110]  X. Py,et al.  Highly conductive composites made of phase change materials and graphite for thermal storage , 2008 .

[111]  Liu Jing,et al.  Liquid metal cooling in thermal management of computer chips , 2007 .

[112]  Ahmad T. Mayyas,et al.  Thermo-mechanical behaviors of the expanded graphite-phase change material matrix used for thermal management of Li-ion battery packs , 2010 .

[113]  Y. Varol,et al.  Energy and exergy analysis of a latent heat storage system with phase change material for a solar collector , 2008 .

[114]  Zhengguo Zhang,et al.  Thermal energy storage cement mortar containing n-octadecane/expanded graphite composite phase change material , 2013 .

[115]  Luisa F. Cabeza,et al.  Materials used as PCM in thermal energy storage in buildings: A review , 2011 .

[116]  Mohammed M. Farid,et al.  A Review on Energy Conservation in Building Applications with Thermal Storage by Latent Heat Using Phase Change Materials , 2021, Thermal Energy Storage with Phase Change Materials.

[117]  Wojciech M. Budzianowski,et al.  Experimental and Numerical Study of Recuperative Heat Recirculation , 2012 .

[118]  R. Velraj,et al.  Solar cookers with and without thermal storage—A review , 2010 .

[119]  Alvin G. Wee,et al.  Use of low fusing alloy in dentistry. , 1998, The Journal of prosthetic dentistry.

[120]  M. Hawlader,et al.  Encapsulated phase change materials for thermal energy storage: Experiments and simulation , 2002 .

[121]  Adriaan S. Luyt,et al.  Polypropylene as a potential matrix for the creation of shape stabilized phase change materials , 2007 .

[122]  Jing Liu,et al.  Phase change effect of low melting point metal for an automatic cooling of USB flash memory , 2012 .

[123]  Jae Goo Lee,et al.  Development of building materials by using micro-encapsulated phase change material , 2007 .

[124]  Yvan Dutil,et al.  A review on phase-change materials: Mathematical modeling and simulations , 2011 .

[125]  Binjiao Chen,et al.  Flow and heat transfer behaviors of phase change material slurries in a horizontal circular tube , 2007 .

[126]  Fausto Cavallaro,et al.  Fuzzy TOPSIS approach for assessing thermal-energy storage in concentrated solar power (CSP) systems , 2010 .

[127]  Mario A. Medina,et al.  Development of a thermally enhanced frame wall with phase‐change materials for on‐peak air conditioning demand reduction and energy savings in residential buildings , 2005 .

[128]  Lixian Sun,et al.  Effects of copper nanowires on the properties of an organic phase change material , 2012 .

[129]  Arun S. Mujumdar,et al.  Application of phase change materials in thermal management of electronics , 2007 .

[130]  F. Bruno,et al.  Review on storage materials and thermal performance enhancement techniques for high temperature phase change thermal storage systems , 2012 .

[131]  L. Cabeza,et al.  Heat and cold storage with PCM: An up to date introduction into basics and applications , 2008 .

[132]  Neil Hewitt,et al.  The development of a finned phase change material (PCM) storage system to take advantage of off-peak electricity tariff for improvement in cost of heat pump operation , 2010 .

[133]  Changying Zhao,et al.  Review on microencapsulated phase change materials (MEPCMs): Fabrication, characterization and applications , 2011 .

[134]  Jing Liu,et al.  Liquid metal based thermoelectric generation system for waste heat recovery , 2011 .

[135]  Frédéric Kuznik,et al.  A review on phase change materials integrated in building walls , 2011 .

[136]  M. Sokolov,et al.  Performance indicators for solar pipes with phase change storage , 1991 .

[137]  Jing Liu,et al.  Revolutionizing heat transport enhancement with liquid metals: Proposal of a new industry of water-free heat exchangers , 2011 .

[138]  K. Nagano,et al.  Thermal characteristics of manganese (II) nitrate hexahydrate as a phase change material for cooling systems , 2003 .

[139]  Robert A. Shanks,et al.  Crystallisation, melting, recrystallisation and polymorphism of n-eicosane for application as a phase change material , 2006 .

[140]  Wojciech M. Budzianowski,et al.  Negative carbon intensity of renewable energy technologies involving biomass or carbon dioxide as inputs , 2012 .