CXCR4 Antagonists

The CXC chemokine receptor 4 (CXCR4) is a widely expressed G protein–coupled receptor implicated in several diseases. In cancer, an increased number of surface CXCR4 receptors, in parallel with aberrant signaling, have been reported to influence several aspects of malignancy progression. CXCR4 activation by the specific ligand C-X-C motif chemokine 12 (CXCL12) induces several intracellular signaling pathways that have been selectively related to malignancy depending on the tissue or cell type. We developed a panel of CXCR4 screening assays investigating Gαi-mediated cyclic adenosine monophosphate modulation, β-arrestin recruitment, and receptor internalization. All of the assays were set up in recombinant cells and were used to test four reported CXCR4 antagonists. Consequently, a set of hit compounds, deriving from a screening campaign of a 30,000-small-molecule internal library, was profiled with the different assays. We identified several compounds showing a pathway-selective activity: antagonists on a Gαi-dependent pathway; antagonists on both the β-arrestin and Gαi-dependent pathways, some of which induce receptor internalization; and compounds with an antagonist behavior in all of the readouts. The identified biased antagonists induce different functional states on CXCR4 and preferentially affect specific downstream responses from the activated receptor, thus providing an improved therapeutic profile for correction of CXCR4 abnormal signaling.

[1]  A. Dubrovska,et al.  Emerging targets in cancer management: role of the CXCL12/CXCR4 axis , 2013, OncoTargets and therapy.

[2]  D. Piwnica-Worms,et al.  Blocking CXCR4-mediated cyclic AMP suppression inhibits brain tumor growth in vivo. , 2007, Cancer research.

[3]  R. Klein,et al.  SDF-1 alpha induces chemotaxis and enhances Sonic hedgehog-induced proliferation of cerebellar granule cells. , 2001, Development.

[4]  A. Otaka,et al.  T140 analogs as CXCR4 antagonists identified as anti‐metastatic agents in the treatment of breast cancer , 2003, FEBS letters.

[5]  Dominique Schols,et al.  Safety, Pharmacokinetics, and Antiviral Activity of AMD3100, a Selective CXCR4 Receptor Inhibitor, in HIV-1 Infection , 2004, Journal of acquired immune deficiency syndromes.

[6]  R. Lefkowitz,et al.  The role of beta-arrestins in the termination and transduction of G-protein-coupled receptor signals. , 2002, Journal of cell science.

[7]  Thomas D. Y. Chung,et al.  A Simple Statistical Parameter for Use in Evaluation and Validation of High Throughput Screening Assays , 1999, Journal of biomolecular screening.

[8]  Kedar S Vaidya,et al.  Inhibition of CXCR4 by CTCE-9908 inhibits breast cancer metastasis to lung and bone. , 2009, Oncology reports.

[9]  E. De Clercq,et al.  Chemokine receptor inhibition by AMD3100 is strictly confined to CXCR4 , 2002, FEBS letters.

[10]  Michel Bouvier,et al.  Bioluminescence Resonance Energy Transfer Reveals Ligand-induced Conformational Changes in CXCR4 Homo- and Heterodimers* , 2005, Journal of Biological Chemistry.

[11]  N. Heveker,et al.  AMD3100 Is a CXCR7 Ligand with Allosteric Agonist Properties , 2009, Molecular Pharmacology.

[12]  Yue Sun,et al.  β-Arrestin2 Is Critically Involved in CXCR4-mediated Chemotaxis, and This Is Mediated by Its Enhancement of p38 MAPK Activation* , 2002, The Journal of Biological Chemistry.

[13]  S. Mundell,et al.  Trafficking of the HIV Coreceptor CXCR4 , 1999, The Journal of Biological Chemistry.

[14]  J. Hoxie,et al.  Phorbol Esters and SDF-1 Induce Rapid Endocytosis and Down Modulation of the Chemokine Receptor CXCR4 , 1997, The Journal of cell biology.

[15]  R. Ransohoff,et al.  Multiple roles of chemokine CXCL12 in the central nervous system: A migration from immunology to neurobiology , 2008, Progress in Neurobiology.

[16]  G. Diaz,et al.  WHIM syndrome: A defect in CXCR4 signaling , 2005, Current allergy and asthma reports.

[17]  Stephen C Peiper,et al.  Molecular-size reduction of a potent CXCR4-chemokine antagonist using orthogonal combination of conformation- and sequence-based libraries. , 2003, Angewandte Chemie.

[18]  E. D. de Vries,et al.  A review on CXCR4/CXCL12 axis in oncology: no place to hide. , 2013, European journal of cancer.

[19]  Yue Sun,et al.  β-Arrestin Differentially Regulates the Chemokine Receptor CXCR4-mediated Signaling and Receptor Internalization, and This Implicates Multiple Interaction Sites between β-Arrestin and CXCR4* , 2000, The Journal of Biological Chemistry.

[20]  Nicole Gross,et al.  The Chemokine Receptor CXCR4 Strongly Promotes Neuroblastoma Primary Tumour and Metastatic Growth, but not Invasion , 2007, PloS one.

[21]  R. Ganju,et al.  The α-Chemokine, Stromal Cell-derived Factor-1α, Binds to the Transmembrane G-protein-coupled CXCR-4 Receptor and Activates Multiple Signal Transduction Pathways* , 1998, The Journal of Biological Chemistry.

[22]  Kim E. Garbison,et al.  The Minimum Significant Ratio: A Statistical Parameter to Characterize the Reproducibility of Potency Estimates from Concentration-Response Assays and Estimation by Replicate-Experiment Studies , 2006, Journal of biomolecular screening.

[23]  T. Tsuruo,et al.  Blockade of the stromal cell-derived factor-1/CXCR4 axis attenuates in vivo tumor growth by inhibiting angiogenesis in a vascular endothelial growth factor-independent manner. , 2005, Cancer research.

[24]  T. Kishimoto,et al.  A novel CXC chemokine PBSF/SDF-1 and its receptor CXCR4: their functions in development, hematopoiesis and HIV infection. , 1998, Seminars in immunology.

[25]  K. Jakobs,et al.  Arrestin-Independent Internalization of G Protein-Coupled Receptors , 2004, Molecular Pharmacology.

[26]  R. Meier,et al.  Chemokines in neuroectodermal cancers: the crucial growth signal from the soil. , 2009, Seminars in cancer biology.

[27]  R. Thompson,et al.  The role of the CXCR4 cell surface chemokine receptor in glioma biology , 2013, Journal of Neuro-Oncology.

[28]  S. McColl,et al.  Differential functional activation of chemokine receptor CXCR4 is mediated by G proteins in breast cancer cells. , 2006, Cancer research.

[29]  J. Rubin,et al.  Chemokine signaling in cancer: one hump or two? , 2009, Seminars in cancer biology.