WEYL-TITCHMARSH THEORY AND BORG-MARCHENKO-TYPE UNIQUENESS RESULTS FOR CMV OPERATORS WITH MATRIX-VALUED

In a method of formation of channels for a sonar, after having sampled at a frequency T=1/4f0 (where f0 is the receiving center frequency of the sonar) the signals from the hydrophones of the sonar and having translated them to baseband, the signals thus translated are subsampled with a period TSE=kT (wherein k is an integer) substantially equal to 1.25 B, where B is the reception bandwidth of the sonar. A first set of signals is subsampled at identical times to form a frontal sector. Two further sets of signals are subsampled with delays between the signals from two adjacent hydrophones equal to T, which determines two side sectors adjacent to the frontal sector. The subsampled signals are then transmitted serially by the towing cable of the sonar device towed array and are processed in FFT circuits which allow to form in each sector a set of channels covering the sector. This allows to considerably reduce the data transmission rate between the towed portion of the sonar and the portion located in the towing ship.

[1]  Stephen Clark,et al.  Borg-Marchenko-type Uniqueness Results for CMV Operators , 2008, 0803.3175.

[2]  P. Yuditskii,et al.  Asymptotic behavior of polynomials orthonormal on a homogeneous set , 2002, math/0611856.

[3]  Barry Simon,et al.  CMV matrices: Five years after , 2006, math/0603093.

[4]  A. Ramm Property C for Ordinary Differential Equations and Applications to Inverse Scattering , 1999 .

[5]  B. M. Levitan,et al.  Inverse Sturm-Liouville Problems , 1987 .

[6]  G. Szegő Beiträge zur Theorie der Toeplitzschen Formen , 1920 .

[7]  Y. Kamp,et al.  GENERALIZED SCHUR REPRESENTATION OF MATRIX-VALUED FUNCTIONS* , 1981 .

[8]  Susan L. Clemmons,et al.  Five Years Later , 2005, Medical reference services quarterly.

[9]  Y. Kamp,et al.  Orthogonal polynomial matrices on the unit circle , 1978 .

[10]  Antonio J. Durán,et al.  ORTHOGONAL MATRIX POLYNOMIALS: ZEROS AND BLUMENTHAL'S THEOREM , 1996 .

[11]  Mark J. Ablowitz,et al.  A Nonlinear Difference Scheme and Inverse Scattering , 1976 .

[12]  J. Geronimo,et al.  An Inverse Problem Associated with Polynomials , 1998 .

[13]  CMV matrices in random matrix theory and integrable systems: a survey , 2005, math-ph/0510045.

[14]  S. Verblunsky,et al.  On Positive Harmonic Functions , 1936 .

[15]  F. Grünbaum,et al.  Orthogonal matrix polynomials satisfying second-order differential equations , 2004 .

[16]  P. Nevai,et al.  Szegő Difference Equations, Transfer Matrices¶and Orthogonal Polynomials on the Unit Circle , 2001 .

[17]  Helge Holden,et al.  Algebro-Geometric Solutions of the Baxter–Szegő Difference Equation , 2005 .

[18]  R. Weikard A local Borg-Marchenko theorem for difference equations with complex coefficients , 2004 .

[19]  G. Szegő Beiträge zur Theorie der Toeplitzschen Formen , 1921 .

[20]  Lax pairs for the Ablowitz-Ladik system via orthogonal polynomials on the unit circle , 2004, math-ph/0412047.

[21]  F. Grünbaum,et al.  A survey on orthogonal matrix polynomials satisfying second order differential equations , 2005 .

[22]  Steve Clark,et al.  Weyl-Titchmarsh M-Function Asymptotics, Local Uniqueness Results, Trace Formulas, and Borg-type Theorems for Dirac Operators , 2001 .

[23]  Christer Bennewitz,et al.  A Proof of the Local Borg–Marchenko Theorem , 2001 .

[24]  On spectral theory for Schrödinger operators with strongly singular potentials , 2005, math/0505120.

[25]  Mark J. Ablowitz,et al.  Nonlinear differential−difference equations , 1975 .

[26]  Y. Berezansky,et al.  THE COMPLEX MOMENT PROBLEM AND DIRECT AND INVERSE SPECTRAL PROBLEMS FOR THE BLOCK JACOBI TYPE BOUNDED NORMAL MATRICES , 2006 .

[27]  David S. Watkins,et al.  Some Perspectives on the Eigenvalue Problem , 1993, SIAM Rev..

[28]  Barry Simon,et al.  Orthogonal Polynomials on the Unit Circle , 2004, Encyclopedia of Special Functions: The Askey-Bateman Project.

[29]  Barry Simon,et al.  A new approach to inverse spectral theory, II. General real potentials and the connection to the spectral measure , 1998, math/9809182.

[30]  R. Bolstein,et al.  Expansions in eigenfunctions of selfadjoint operators , 1968 .

[31]  M. Gekhtman,et al.  Inverse problem of the spectral analysis and non-Abelian chains of nonlinear equations , 1990 .

[32]  K. Knudsen On a local uniqueness result for the inverse Sturm-Liouville problem , 2001 .

[33]  M. Ablowitz,et al.  On the solution of a class of nonlinear partial di erence equations , 1977 .

[34]  B. M. Brown,et al.  A local borg-marchenko theorem for complex potentials , 2002 .

[35]  P. López-Rodríguez Riesz's Theorem for Orthogonal Matrix Polynomials , 1999 .

[36]  Barry Simon,et al.  A new approach to inverse spectral theory, I. Fundamental formalism , 1999, math/9906118.

[37]  Fritz Gesztesy,et al.  Weyl-Titchmarsh theory for CMV operators associated with orthogonal polynomials on the unit circle , 2006, J. Approx. Theory.

[38]  A connection between orthogonal polynomials on the unit circle and matrix orthogonal polynomials on the real line , 2002, math/0204294.

[39]  N. Levinson The Wiener (Root Mean Square) Error Criterion in Filter Design and Prediction , 1946 .

[40]  Helge Holden,et al.  Soliton Equations and Their Algebro-Geometric Solutions: The AKNS Hierarchy , 2003 .

[41]  Vadym Vekslerchik,et al.  Finite-genus solutions for the Ablowitz-Ladik hierarchy , 1999, solv-int/9903004.

[42]  A. Sakhnovich Skew-self-adjoint discrete and continuous Dirac-type systems: inverse problems and Borg–Marchenko theorems , 2005, math/0511594.

[43]  Andrei Osipov On some issues related to the moment problem for the band matrices with operator elements , 2002 .

[44]  Barry Simon,et al.  Orthogonal polynomials on the unit circle. Part 1 , 2005 .

[45]  A. Aptekarev,et al.  The Scattering Problem for a Discrete Sturm-Liouville Operator , 1984 .

[46]  Walter Van Assche,et al.  Orthogonal matrix polynomials and higher-order recurrence relations , 1993 .

[47]  F. Gesztesy,et al.  A Borg‐Type Theorem Associated with Orthogonal Polynomials on the Unit Circle , 2005, math/0501212.

[48]  Philippe Delsarte,et al.  On a generalization of the Szegö-Levinson recurrence and its application in lossless inverse scattering , 1992, IEEE Trans. Inf. Theory.

[49]  F. Grünbaum,et al.  The algebra of differential operators associated to a family of matrix-valued orthogonal polynomials: Five instructive examples , 2006 .

[50]  T. Constantinescu,et al.  Schur's Algorithm and Several Applications , 1992 .

[51]  R. Schilling A systematic approach to the soliton equations of a discrete eigenvalue problem , 1989 .

[52]  F. Grünbaum,et al.  Structural Formulas for Orthogonal Matrix Polynomials Satisfying Second-Order Differential Equations, I , 2005 .

[53]  Matrix Christoffel Functions , 2004 .

[54]  H. Holden,et al.  Institute for Mathematical Physics the Ablowitz–ladik Hierarchy Revisited the Ablowitz–ladik Hierarchy Revisited , 2022 .

[55]  Alexander G. Ramm,et al.  Property C for ODE and applications to inverse problems. , 1999 .

[56]  M. Horvath On the inverse spectral theory of Schrödinger and Dirac operators , 2001 .

[57]  Weyl matrix functions and inverse problems for discrete Dirac type self-adjoint system: explicit and general solutions , 2007, math/0703369.

[58]  Perturbations in the Nevai matrix class of orthogonal matrix polynomials , 2001 .

[59]  J. Geronimus On the Trigonometric Moment Problem , 1946 .

[60]  J. Geronimo Matrix orthogonal polynomials on the unit circle , 1981 .

[61]  F. Gesztesy,et al.  On Local Borg–Marchenko Uniqueness Results , 2000 .

[62]  G. Szegő Zeros of orthogonal polynomials , 1939 .

[63]  Antonio J. Durán,et al.  N-EXTREMAL MATRICES OF MEASURES FOR AN INDETERMINATE MATRIX MOMENT PROBLEM , 2000 .

[64]  Jeffrey S. Geronimo,et al.  Scattering theory and matrix orthogonal polynomials on the real line , 1982 .

[65]  Barry Simon,et al.  OPUC on one foot , 2005, math/0502485.

[66]  S. Verblunsky,et al.  On Positive Harmonic Functions: A Contribution to the Algebra of Fourier Series , 1935 .

[67]  C. Foias,et al.  Harmonic Analysis of Operators on Hilbert Space , 1970 .

[68]  F. Gesztesy,et al.  On Matrix–Valued Herglotz Functions , 1997, funct-an/9712004.

[69]  Alain Joye,et al.  Spectral Analysis of Unitary Band Matrices , 2003 .

[70]  B. M. Levitan,et al.  Determination of a Differential Equation by Two of its Spectra , 1964 .

[71]  Dante C. Youla,et al.  Bauer-type factorization of positive matrices and the theory of matrix polynomials orthogonal on the unit circle , 1978 .

[72]  Angelika Bunse-Gerstner,et al.  Schur parameter pencils for the solution of the unitary eigenproblem , 1991 .

[73]  M. Ismail,et al.  Differential coefficients of orthogonal matrix polynomials , 2006 .

[74]  F. Gesztesy,et al.  Uniqueness Results for Matrix-Valued Schrodinger, Jacobi, and Dirac-Type Operators , 2000 .

[75]  Analogs of the m -function in the theory of orthogonal polynomials on the unit circle , 2003, math/0311050.

[76]  Alexander Sakhnovich,et al.  Dirac type and canonical systems: spectral and Weyl–Titchmarsh matrix functions, direct and inverse problems , 2002 .

[77]  F. Marcellán,et al.  Orthogonal Matrix Polynomials, Connection Between Recurrences on the Unit Circle and on a Finite Interval , 2001 .

[78]  J. Geronimo,et al.  Inverse Problem for Polynomials Orthogonal on the Unit Circle , 1998 .

[79]  M. Ablowitz,et al.  Nonlinear differential–difference equations and Fourier analysis , 1976 .

[80]  F. Grünbaum,et al.  A characterization for a class of weight matrices with orthogonal matrix polynomials satisfying second-order differential equations , 2005 .

[81]  Riemann-Hilbert Methods in the Theory of Orthogonal Polynomials , 2006, math/0603309.

[82]  I. Gel'fand,et al.  On the determination of a differential equation from its spectral function , 1955 .

[83]  Leandro Moral,et al.  Five-diagonal matrices and zeros of orthogonal polynomials on the unit circle , 2002 .

[84]  I︠a︡. L. Geronimus Polynomials orthogonal on a circle and their applications , 1954 .

[85]  N. Ayırtman,et al.  Univalent Functions , 1965, Series and Products in the Development of Mathematics.

[86]  Orthogonal polynomials on the unit circle: New results , 2004, math/0405111.

[87]  Miguel A. Piñar,et al.  Relative Asymptotics for Orthogonal Matrix Polynomials with Convergent Recurrence Coefficients , 2001, J. Approx. Theory.

[88]  N. Akhiezer,et al.  The Classical Moment Problem. , 1968 .

[89]  Antonio J. Durán Guardeño,et al.  Orthogonal matrix polynomials , 2004 .

[90]  Y. Kamp,et al.  The Nevanlinna–Pick Problem for Matrix-Valued Functions , 1979 .

[91]  J. Geronimo,et al.  A Difference Equation Arising from the Trigonometric Moment Problem Having Random Reflection Coefficients - An Operator Theoretic Approach , 1994 .

[92]  J. Geronimo,et al.  ROTATION NUMBER ASSOCIATED WITH DIFFERENCE EQUATIONS SATISFIED BY POLYNOMIALS ORTHOGONAL ON THE UNIT CIRCLE , 1996 .