VQNet 2.0: A New Generation Machine Learning Framework that Unifies Classical and Quantum
暂无分享,去创建一个
Weiming Zhang | G. Guo | Leijiao Li | Yang Yang | Ye Li | Menghan Dou | Z. Jia | Yiming Zhao | Huanyu Bian | Zhao-Yun Chen | Wenyu Zhu | Neng H. Yu | Yuan Fang | Hanchao Wang | Zhao-ping Zhou | Wei Wang
[1] Wenbo Guo,et al. QPanda: high-performance quantum computing framework for multiple application scenarios , 2022, ArXiv.
[2] H. Neven,et al. Power of data in quantum machine learning , 2020, Nature Communications.
[3] Arthur Pesah,et al. Quantum machine learning in high energy physics , 2020, Mach. Learn. Sci. Technol..
[4] L. Lamata. Quantum machine learning and quantum biomimetics: A perspective , 2020, Mach. Learn. Sci. Technol..
[5] Ievgeniia Oshurko. Quantum Machine Learning , 2020, Quantum Computing.
[6] David Von Dollen,et al. TensorFlow Quantum: A Software Framework for Quantum Machine Learning , 2020, ArXiv.
[7] Laszlo Gyongyosi,et al. Optimizing High-Efficiency Quantum Memory with Quantum Machine Learning for Near-Term Quantum Devices , 2020, Scientific Reports.
[8] Lars A. Bratholm,et al. FCHL revisited: Faster and more accurate quantum machine learning. , 2019, The Journal of chemical physics.
[9] Natalia Gimelshein,et al. PyTorch: An Imperative Style, High-Performance Deep Learning Library , 2019, NeurIPS.
[10] G. Guo,et al. VQNet: Library for a Quantum-Classical Hybrid Neural Network , 2019, 1901.09133.
[11] Nathan Killoran,et al. PennyLane: Automatic differentiation of hybrid quantum-classical computations , 2018, ArXiv.
[12] Simone Severini,et al. Quantum machine learning: a classical perspective , 2017, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[13] O Anatole von Lilienfeld,et al. Quantum Machine Learning in Chemical Compound Space. , 2018, Angewandte Chemie.
[14] Jacob Schreiber,et al. Pomegranate: fast and flexible probabilistic modeling in python , 2017, J. Mach. Learn. Res..
[15] Luca Antiga,et al. Automatic differentiation in PyTorch , 2017 .
[16] Barak A. Pearlmutter,et al. Automatic differentiation in machine learning: a survey , 2015, J. Mach. Learn. Res..
[17] Andrew Lavin,et al. maxDNN: An Efficient Convolution Kernel for Deep Learning with Maxwell GPUs , 2015, ArXiv.
[18] John Tran,et al. cuDNN: Efficient Primitives for Deep Learning , 2014, ArXiv.
[19] Trevor Darrell,et al. Caffe: Convolutional Architecture for Fast Feature Embedding , 2014, ACM Multimedia.
[20] Clément Farabet,et al. Torch7: A Matlab-like Environment for Machine Learning , 2011, NIPS 2011.
[21] Travis E. Oliphant,et al. Python for Scientific Computing , 2007, Computing in Science & Engineering.
[22] Andrei Alexandrescu,et al. Modern C++ design: generic programming and design patterns applied , 2001 .
[23] Scott Meyers,et al. Effective C++: 55 Specific Ways to Improve Your Programs and Designs (3rd Edition) , 1991 .