Parasitic worms: strategies of host finding, recognition and invasion.

Many parasitic worms enter their hosts by active invasion. Their transmission success is often based on a mass production of invasive stages. However, most stages show a highly specific host-finding behaviour. Information on host-finding mechanisms is available mainly for trematode miracidia and cercariae and for nematode hookworms. The larvae find and recognise their hosts, in some cases even with species specificity, via complex sequences of behavioural patterns with which they successively respond to various environmental and host cues. There is often a surprisingly high diversity of host-recognition strategies. Each parasite species finds and enters its host using a different series of cues. For example, different species of schistosomes enter the human skin using different recognition sequences. The various recognition strategies may reflect adaptations to distinct ecological conditions of transmission. Another question is how, after invasion, parasitic worms find their complex paths through their host's tissues to their often very specific microhabitats. Recent data show that the migrating parasite stages can follow local chemical gradients of skin and blood compounds, but their long-distance navigation within the host body still remains puzzling. The high complexity, specificity and diversity of host-recognition strategies suggest that host finding and host recognition are important determinants in the evolution of parasite life cycles.

[1]  J. A. Clegg,et al.  Skin penetration by cercariae of the bird schistosome Austrobilharzia terrigalensis: the stimulatory effect of cholesterol , 1969, Parasitology.

[2]  L. Chitsulo,et al.  The global status of schistosomiasis and its control. , 2000, Acta tropica.

[3]  M. Khayyal,et al.  Schistosoma haematobium cercarial host-finding and host-recognition differs from that of S. mansoni. , 1994, The Journal of parasitology.

[4]  W. Haas Analyse der invasionsmechanismen der cercarie von Diplostomum spathaceum—II. Chemische invasionsstimuli , 1974 .

[5]  A. Rosenberg Biology of the Sialic Acids , 1995, Springer US.

[6]  W. Haas,et al.  Snail host finding by Fasciola hepatica and Trichobilharzia ocellata: compound analysis of "miracidia-attracting glycoproteins". , 2000, Experimental parasitology.

[7]  K. Saladin Behavioral parasitology and perspectives on miracidial host-finding , 1979, Zeitschrift für Parasitenkunde.

[8]  E. Loker,et al.  Schistosoma mansoni and Biomphalaria: past history and future trends , 2001, Parasitology.

[9]  M. Ströbel,et al.  Miracidia of Schistosoma japonicum: approach and attachment to the snail host. , 1991, The Journal of parasitology.

[10]  Anne B. Keating,et al.  Diplostomum spathaceum cercariae respond to a unique profile of cues during recognition of their fish host. , 2002, International journal for parasitology.

[11]  W. Haas,et al.  Finding and recognition of the bovine host by the cercariae ofSchistosoma spindale , 2004, Parasitology Research.

[12]  J. Hamburger,et al.  Detection of bird schistosomes in lakes by PCR and filter-hybridization. , 2002, Experimental parasitology.

[13]  B. Fried,et al.  Skin surface lipids of the domestic chicken, and neutral lipid standards as stimuli for the penetration response of Austrobilharzia variglandis cercariae. , 1982, The Journal of parasitology.

[14]  T. Graczyk,et al.  Advances in Trematode Biology , 2024 .

[15]  W. Haas Physiological analysis of cercarial behavior. , 1992, The Journal of parasitology.

[16]  C. Shiff,et al.  The influence of human skin lipids on the cercarial penetration responses of Schistosoma haematobium and Schistosoma mansoni. , 1972, The Journal of parasitology.

[17]  C. Combes,et al.  Behaviours in trematode cercariae that enhance parasite transmission: patterns and processes , 1994, Parasitology.

[18]  T. Graczyk,et al.  Echinostomes as Experimental Models for Biological Research , 2000, Springer Netherlands.

[19]  W. Haas Physiological analyses of host-finding behaviour in trematode cercariae: adaptations for transmission success , 1994, Parasitology.

[20]  W. Haas,et al.  Host-finding in Trichobilharzia ocellata cercariae: swimming and attachment to the host , 1988, Parasitology.

[21]  W. Haas,et al.  Chemical signals of fish skin for the attachment response of Acanthostomum brauni cercariae , 2004, Parasitology Research.

[22]  W. Haas Analyse der invasionsmechanismen der cercarie von Diplostomum spathaceum—I. Fixation und penetration , 1974 .

[23]  A. Théron Early and late shedding patterns of Schistosoma mansoni cercariae: ecological significance in transmission to human and murine hosts. , 1984, The Journal of parasitology.

[24]  K. Warren,et al.  Hookworm disease : current status and new directions , 1990 .

[25]  W. Haas,et al.  Host-finding and host recognition of infective Ancylostoma caninum larvae. , 1991, International journal for parasitology.

[26]  T. Ikeshoji,et al.  Overcrowding Factors of Mosquito Larvae: Isolation and Chemical Identification , 1974 .

[27]  A. Fusco,et al.  Eicosanoids as immunomodulators of penetration by Schistosome cercariae. , 1987, Parasitology today.

[28]  M. Körner,et al.  Chemo-orientation of echinostome cercariae towards their snail hosts: the stimulating structure of amino acids and other attractants. , 1998, International journal for parasitology.

[29]  M. Körner,et al.  Host-finding in Echinostoma caproni: miracidia and cercariae use different signals to identify the same snail species , 2000, Parasitology.

[30]  N. Christensen,et al.  A review of the influence of host- and parasite-related factors and environmental conditions on the host-finding capacity of the trematode miracidium. , 1980, Acta tropica.

[31]  M. Fuchs,et al.  Recognition and invasion of human skin by Schistosoma mansoni cercariae: the key-role of L-arginine , 2002, Parasitology.

[32]  D. Crompton,et al.  The public health importance of hookworm disease , 2000, Parasitology.

[33]  D. Jamison,et al.  The evaluation of potential global morbidity attributable to intestinal nematode infections , 1994, Parasitology.

[34]  M. Körner,et al.  Snail-host-finding by Miracidia and Cercariae: Chemical Host Cues , 1995 .

[35]  D. Rollinson,et al.  Cercariae to liver worms: development and migration in the mammalian host. , 1987 .

[36]  U. Ehlers,et al.  Ultrastructure of pigmented and unpigmented photoreceptors in cercariae of Trichobilharzia ocellata (Plathelminthes, Trematoda, Schistosomatidae): evidence for the evolution of parasitism in Neodermata , 2003, Parasitology Research.

[37]  M. Stirewált,et al.  Schistosoma mansoni: stimulatory effect of rat skin lipid fractions on cercarial penetration behavior. , 1972, Experimental parasitology.

[38]  W. Haas,et al.  Photo- and Geo-Orientation by Echinostome Cercariae Results in Habitat Selection , 2001, The Journal of parasitology.

[39]  W. Haas Einfluß von CO2 und pH auf das Fixationsverhalten der Cercarie von Diplostomum spathaceum (Trematoda) , 1975, Zeitschrift für Parasitenkunde.

[40]  M. Sukhdeo,et al.  Optimal habitat selection by helminths within the host environment , 1994, Parasitology.

[41]  W. Haas,et al.  Schistosoma mansoni and Trichobilharzia ocellata: comparison of secreted cercarial eicosanoids. , 1993, The Journal of parasitology.

[42]  T. Senshu,et al.  Preferential deimination of keratin K1 and filaggrin during the terminal differentiation of human epidermis. , 1996, Biochemical and biophysical research communications.

[43]  W. Haas The Behavioral Biology of Echinostomes , 2000 .

[44]  S. Kelm,et al.  Biochemistry and Role of Sialic Acids , 1995 .

[45]  W. Haas,et al.  Host identification by Schistosoma japonicum cercariae. , 1987, The Journal of parasitology.

[46]  W. Haas,et al.  Invasion of the vertebrate skin by cercariae of Trichobilharzia ocellata : penetration processes and stimulating host signals , 1998, Parasitology Research.

[47]  W. Haas,et al.  Trichobilharzia ocellata: chemical stimuli of duck skin for cercarial attachment , 1988, Parasitology.

[48]  K. Warren,et al.  Necator americanus: factors influencing skin penetration by larvae. , 1990 .

[49]  W. Haas,et al.  Miracidium of Schistosoma mansoni: a macromolecular glycoconjugate as signal for the behaviour after contact with the snail host. , 1992, Comparative biochemistry and physiology. Comparative physiology.

[50]  W. Haas,et al.  ICHTHYOPHTHIRIUS MULTIFILIIS INVASIVE STAGES FIND THEIR FISH HOSTS WITH COMPLEX BEHAVIOR PATTERNS AND IN RESPONSE TO DIFFERENT CHEMICAL SIGNALS , 1999 .

[51]  W. Haas,et al.  Penetration stimuli of fish skin for Acanthostomum brauni cercariae , 1991, Parasitology.

[52]  H. Gamble,et al.  Response to carbon dioxide by the infective larvae of three species of parasitic nematodes. , 2002, Parasitology international.

[53]  W. Haas,et al.  Characterization of chemical stimuli for the penetration ofschistosoma mansoni cercariae , 2004, Zeitschrift für Parasitenkunde.

[54]  E. S. Upatham,et al.  Location of Biomphalaria glabrata (Say) by miracidia of Schistosoma mansoni Sambon in natural standing and running waters on the West Indian Island of St. Lucia. , 1973, International journal for parasitology.

[55]  W. Haas,et al.  The chemical stimuli of human skin surface for the attachment response of Schistosoma mansoni cercariae. , 1986, International journal for parasitology.

[56]  T. Graczyk,et al.  Host recognition by trematode miracidia and cercariae. , 1997 .

[57]  A. H. Hassan,et al.  Miracidia of an Egyptian Strain of Schistosoma mansoni Differentiate Between Sympatric Snail Species , 2003, The Journal of parasitology.

[58]  W. Haas,et al.  Fine structure of a lens-covered photoreceptor in the cercaria ofTrichobilharzia ocellata , 1984, Zeitschrift für Parasitenkunde.

[59]  N. Arisue,et al.  Sequence heterogeneity of the small subunit ribosomal RNA genes among Blastocystis isolates , 2003, Parasitology.

[60]  W. Haas Die Anheftung (Fixation) der Cercarie von Schistosoma mansoni , 2004, Zeitschrift für Parasitenkunde.

[61]  W. Haas,et al.  Miracidial host-finding in Fasciola hepatica and Trichobilharzia ocellata is stimulated by species-specific glycoconjugates released from the host snails , 1997, Parasitology Research.

[62]  A. MacInnis Responses of Schistosoma mansoni miracidia to chemical attractants. , 1965, The Journal of parasitology.

[63]  W. Haas,et al.  Opisthorchis viverrini: finding and recognition of the fish host by the cercariae. , 1990, Experimental parasitology.

[64]  M. Körner,et al.  Chemo-orientation of echinostome cercariae towards their snail hosts: amino acids signal a low host-specificity. , 1998, International journal for parasitology.

[65]  D. Diekhoff,et al.  Schistosoma mansoni cercariae: stimulation of acetabular gland secretion is adapted to the chemical composition of mammalian skin. , 1997, The Journal of parasitology.

[66]  J. Hamburger,et al.  Description of a tandem repeated DNA sequence of Echinostoma caproni and methods for its detection in snail and plankton samples , 2003, Parasitology.

[67]  C. Combes,et al.  Genetic analysis of cercarial emergence rhythms ofSchistosoma mansoni , 1988, Behavior genetics.

[68]  M. Sukhdeo,et al.  Fixed behaviours and migration in parasitic flatworms. , 2002, International journal for parasitology.

[69]  S. Kock Investigations of intermediate host specificity help to elucidate the taxonomic status of Trichobilharzia ocellata (Digenea: Schistosomatidae) , 2001, Parasitology.

[70]  W. Haas Schistosoma mansoni: cercaricidal effect of 2-tetradecenoic acid, a penetration stimulant. , 1984, Experimental parasitology.

[71]  W. Haas,et al.  Characterization of chemical stimuli for the penetration ofschistosoma mansoni cercariae , 1982, Zeitschrift für Parasitenkunde.

[72]  M. Wegner,et al.  Finding and recognition of the snail intermediate hosts by 3 species of echinostome cercariae , 1995, Parasitology.