Complete Plastid Genomes of Nine Species of Ranunculeae (Ranunculaceae) and Their Phylogenetic Inferences

The tribe Ranunculeae, Ranunculaceae, comprising 19 genera widely distributed all over the world. Although a large number of Sanger sequencing-based molecular phylogenetic studies have been published, very few studies have been performed on using genomic data to infer phylogenetic relationships within Ranunculeae. In this study, the complete plastid genomes of nine species (eleven samples) from Ceratocephala, Halerpestes, and Ranunculus were de novo assembled using a next-generation sequencing method. Previously published plastomes of Oxygraphis and other related genera of the family were downloaded from GenBank for comparative analysis. The complete plastome of each Ranunculeae species has 112 genes in total, including 78 protein-coding genes, 30 transfer RNA genes, and four ribosomal RNA genes. The plastome structure of Ranunculeae samples is conserved in gene order and arrangement. There are no inverted repeat (IR) region expansions and only one IR contraction was found in the tested samples. This study also compared plastome sequences across all the samples in gene collinearity, codon usage, RNA editing sites, nucleotide variability, simple sequence repeats, and positive selection sites. Phylogeny of the available Ranunculeae species was inferred by the plastome data using maximum-likelihood and Bayesian inference methods, and data partitioning strategies were tested. The phylogenetic relationships were better resolved compared to previous studies based on Sanger sequencing methods, showing the potential value of the plastome data in inferring the phylogeny of the tribe.

[1]  S. Park,et al.  Complete Chloroplast Genome Determination of Ranunculus sceleratus from Republic of Korea (Ranunculaceae) and Comparative Chloroplast Genomes of the Members of the Ranunculus Genus , 2023, Genes.

[2]  Chunhua Wu,et al.  Complete chloroplast genome sequences of the medicinal plant Aconitum transsectum (Ranunculaceae): comparative analysis and phylogenetic relationships , 2023, BMC Genomics.

[3]  Jianquan Liu,et al.  Genome-scale angiosperm phylogenies based on nuclear, plastome, and mitochondrial datasets. , 2023, Journal of integrative plant biology.

[4]  S. Kelly,et al.  The Evolutionary Constraints on Angiosperm Chloroplast Adaptation , 2022, bioRxiv.

[5]  Matthew A. Gitzendanner,et al.  Plastid phylogenomic insights into relationships of all flowering plant families , 2021, BMC Biology.

[6]  D. Potter,et al.  Chloroplast genomes elucidate diversity, phylogeny, and taxonomy of Pulsatilla (Ranunculaceae) , 2020, Scientific Reports.

[7]  Lei Xie,et al.  Structural variation of the complete chloroplast genome and plastid phylogenomics of the genus Asteropyrum (Ranunculaceae) , 2019, Scientific Reports.

[8]  H. Kong,et al.  Chloroplast genomic data provide new and robust insights into the phylogeny and evolution of the Ranunculaceae. , 2019, Molecular phylogenetics and evolution.

[9]  Michael J. Moore,et al.  PGA: a software package for rapid, accurate, and flexible batch annotation of plastomes , 2019, Plant Methods.

[10]  Pamela S Soltis,et al.  Origin of angiosperms and the puzzle of the Jurassic gap , 2019, Nature Plants.

[11]  Jaakko Hyvönen,et al.  IRscope: an online program to visualize the junction sites of chloroplast genomes , 2018, Bioinform..

[12]  Xingjin He,et al.  Comparative Analysis of the Chloroplast Genomes of the Chinese Endemic Genus Urophysa and Their Contribution to Chloroplast Phylogeny and Adaptive Evolution , 2018, International journal of molecular sciences.

[13]  Jin Sun,et al.  Molecular adaptation in the world's deepest‐living animal: Insights from transcriptome sequencing of the hadal amphipod Hirondellea gigas , 2017, Molecular ecology.

[14]  Robert Lanfear,et al.  PartitionFinder 2: New Methods for Selecting Partitioned Models of Evolution for Molecular and Morphological Phylogenetic Analyses. , 2016, Molecular biology and evolution.

[15]  S. Nadot,et al.  Subfamilial and tribal relationships of Ranunculaceae: evidence from eight molecular markers , 2016, Plant Systematics and Evolution.

[16]  E. Hörandl,et al.  Karyotype evolution supports the molecular phylogeny in the genus Ranunculus (Ranunculaceae) , 2016 .

[17]  M. Hoffmann,et al.  Phylogenetic relationships and evolution of high mountain buttercups (Ranunculus) in North America and Central Asia , 2015 .

[18]  E. Hörandl Nothing in Taxonomy Makes Sense Except in the Light of Evolution: Examples from the Classification of Ranunculus1 , 2014 .

[19]  De‐Zhu Li,et al.  Chloroplast phylogenomic analyses resolve deep-level relationships of an intractable bamboo tribe Arundinarieae (poaceae). , 2014, Systematic biology.

[20]  Zhiduan Chen,et al.  Revisiting the phylogeny of Ranunculeae: Implications for divergence time estimation and historical biogeography , 2014 .

[21]  Alexandros Stamatakis,et al.  RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies , 2014, Bioinform..

[22]  Marc Lohse,et al.  OrganellarGenomeDRAW—a suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets , 2013, Nucleic Acids Res..

[23]  E. Hörandl,et al.  Evolutionary classification: A case study on the diverse plant genus Ranunculus L. (Ranunculaceae) , 2012 .

[24]  Sergey I. Nikolenko,et al.  SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing , 2012, J. Comput. Biol..

[25]  Shane S. Sturrock,et al.  Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data , 2012, Bioinform..

[26]  E. Hörandl,et al.  The evolution and biogeography of alpine species in Ranunculus (Ranunculaceae): A global comparison , 2011 .

[27]  Kai F. Müller,et al.  The evolution of the plastid chromosome in land plants: gene content, gene order, gene function , 2011, Plant Molecular Biology.

[28]  Ziheng Yang,et al.  Statistical properties of the branch-site test of positive selection. , 2011, Molecular biology and evolution.

[29]  E. Hörandl,et al.  Northern Hemisphere origin, transoceanic dispersal, and diversification of Ranunculeae DC. (Ranunculaceae) in the Cenozoic , 2011 .

[30]  P. Lockhart,et al.  A molecular phylogeny, morphology and classification of genera of Ranunculeae (Ranunculaceae) , 2010 .

[31]  Pablo Librado,et al.  DnaSP v5: a software for comprehensive analysis of DNA polymorphism data , 2009, Bioinform..

[32]  Jeffrey P. Mower The PREP suite: predictive RNA editors for plant mitochondrial genes, chloroplast genes and user-defined alignments , 2009, Nucleic Acids Res..

[33]  M. Arroyo,et al.  Phylogenetic Position of the South American Dioecious Genus Hamadryas and Related Ranunculeae (Ranunculaceae) , 2008, International Journal of Plant Sciences.

[34]  V. Ravi,et al.  An update on chloroplast genomes , 2008, Plant Systematics and Evolution.

[35]  D. Mccauley,et al.  Inheritance of chloroplast DNA is not strictly maternal in Silene vulgaris (Caryophyllaceae): evidence from experimental crosses and natural populations. , 2007, American journal of botany.

[36]  Peter J. Lockhart,et al.  Phylogenetic relationships and biogeography of Ranunculus and allied genera (Ranunculaceae) in the Mediterranean region and in the European Alpine System , 2005 .

[37]  P. Lockhart,et al.  Phylogenetic relationships and evolutionary traits in Ranunculus s.l. (Ranunculaceae) inferred from ITS sequence analysis. , 2005, Molecular phylogenetics and evolution.

[38]  K. Katoh,et al.  MAFFT version 5: improvement in accuracy of multiple sequence alignment , 2005, Nucleic acids research.

[39]  Lior Pachter,et al.  VISTA: computational tools for comparative genomics , 2004, Nucleic Acids Res..

[40]  John P. Huelsenbeck,et al.  MrBayes 3: Bayesian phylogenetic inference under mixed models , 2003, Bioinform..

[41]  J. Stoye,et al.  REPuter: the manifold applications of repeat analysis on a genomic scale. , 2001, Nucleic acids research.

[42]  J. Johansson There large inversions in the chloroplast genomes and one loss of the chloroplast generps16 suggest an early evolutionary split in the genusAdonis (Ranunculaceae) , 1999, Plant Systematics and Evolution.

[43]  Ziheng Yang,et al.  PAML: a program package for phylogenetic analysis by maximum likelihood , 1997, Comput. Appl. Biosci..

[44]  M. Morgante,et al.  Polymorphic simple sequence repeat regions in chloroplast genomes: applications to the population genetics of pines. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[45]  Wang Wen tsai A REVISION OF THE GENUS RANUNCULUS IN CHINA(I) , 1995 .

[46]  M. Tamura Morphology,ecology and phylogeny of the Ranunculaceae,1. , 1963 .

[47]  L. Benson A Treatise on the North American Ranunculi , 1948 .

[48]  Robert K. Jansen,et al.  Plastome Phylogenetics: 30 Years of Inferences Into Plant Evolution , 2018 .

[49]  Julian Tonti-Filippini,et al.  What can we do with 1000 plastid genomes? , 2017, The Plant journal : for cell and molecular biology.

[50]  B. Gehrke,et al.  The biogeographical history of the cosmopolitan genus Ranunculus L. (Ranunculaceae) in the temperate to meridional zones. , 2011, Molecular phylogenetics and evolution.

[51]  Zhiduan Chen,et al.  Phylogeny and classification of Ranunculales: Evidence from four molecular loci and morphological data , 2009 .

[52]  Andreas Graner,et al.  Genic microsatellite markers in plants: features and applications. , 2005, Trends in biotechnology.

[53]  Peden Jf,et al.  Analysis of codon usage. , 2000 .

[54]  J. Hutchinson Contributions towards a Phylogenetic Classification of Flowering Plants: III , 1923 .

[55]  Xiang Shu,et al.  The Flora of China , 1889, Nature.