New formulation for an industrial robot force controller: Real-time implementation on a KUKA robot

In this paper, a new formulation is proposed for the design of a force controller for an industrial robot. The model takes into account the complete kinematics of the system and the position response of the industrial robot controller. The proposed formulation is used to design and implement a PI controller on a KUKA robot for two different stiffness environments. Good results are obtained by using dominant pole placement method for the controller design.

[1]  Pascal Bigras,et al.  Robust position/force controller design on an industrial robot for medical application using LMI optimization , 2004, 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No.04CH37583).

[2]  Yuichi Matsumoto,et al.  Analysis and experimental validation of force bandwidth for force control , 2003, IEEE International Conference on Industrial Technology, 2003.

[3]  Karl Johan Åström,et al.  Adaptive Control , 1989, Embedded Digital Control with Microcontrollers.

[4]  Mark W. Spong,et al.  On the force control problem for flexible joint manipulators , 1989 .

[5]  James A. Maples,et al.  Experiments in force control of robotic manipulators , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[6]  Gene F. Franklin,et al.  Digital control of dynamic systems , 1980 .

[7]  Gunnar Bolmsjö,et al.  Extending an industrial robot controller: implementation and applications of a fast open sensor interface , 2005, IEEE Robotics & Automation Magazine.

[8]  Gérard Piolain,et al.  Force-feedback teleoperation of an industrial robot in a nuclear spent fuel reprocessing plant , 2006, Ind. Robot.

[9]  Dale A. Lawrence,et al.  Impedance control stability properties in common implementations , 1988, Proceedings. 1988 IEEE International Conference on Robotics and Automation.

[10]  Luigi Villani,et al.  Experiments of impedance control on an industrial robot manipulator with joint friction , 1996, Proceeding of the 1996 IEEE International Conference on Control Applications IEEE International Conference on Control Applications held together with IEEE International Symposium on Intelligent Contro.

[11]  Bijan Shirinzadeh,et al.  Enhanced stiffness modeling, identification and characterization for robot manipulators , 2005, IEEE Transactions on Robotics.

[12]  Luigi Villani,et al.  Impedance control for multi-arm manipulation , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[13]  Bruno Siciliano,et al.  Integration for the next generation: embedding force control into industrial robots , 2005, IEEE Robotics & Automation Magazine.

[14]  Tsuneo Yoshikawa,et al.  Modeling of Flexible Manipulators Using Virtual Rigid Links and Passive Joints , 1996, Int. J. Robotics Res..

[15]  Tore Hägglund,et al.  Automatic Tuning of Pid Controllers , 1988 .

[16]  Yin-Tien Wang,et al.  Development of a polishing robot system , 1999, 1999 7th IEEE International Conference on Emerging Technologies and Factory Automation. Proceedings ETFA '99 (Cat. No.99TH8467).

[17]  Richard Volpe,et al.  A theoretical and experimental investigation of explicit force control strategies for manipulators , 1993, IEEE Trans. Autom. Control..

[18]  Bruno Siciliano,et al.  A survey of robot interaction control schemes with experimental comparison , 1999 .

[19]  Mohamed A. Elbestawi,et al.  Robotic grinding force regulation: design, implementation and benefits , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[20]  C. L. Teo,et al.  Non-model-based impedance control of an industrial robot , 1997, 1997 8th International Conference on Advanced Robotics. Proceedings. ICAR'97.