Eigenvalue Algorithms for Symmetric Hierarchical Matrices
暂无分享,去创建一个
[1] Claude Le Bris,et al. Computational chemistry from the perspective of numerical analysis , 2005, Acta Numerica.
[2] Wolfgang Hackbusch,et al. A projection method for the computation of inner eigenvalues using high degree rational operators , 2007, Computing.
[3] David S. Watkins,et al. Convergence of algorithms of decomposition type for the eigenvalue problem , 1991 .
[4] Shivkumar Chandrasekaran,et al. A fast and stable solver for recursively semi-separable systems of linear equations , 2001 .
[5] Tri Nguyen,et al. The Interplay of Ranks of Submatrices , 2004, SIAM Rev..
[6] W. Hackbusch,et al. Introduction to Hierarchical Matrices with Applications , 2003 .
[7] Peter Benner,et al. An Implicitly Restarted Symplectic Lanczos Method for the Symplectic Eigenvalue Problem , 2000, SIAM J. Matrix Anal. Appl..
[8] Steffen Börm,et al. Data-sparse approximation of non-local operators by H2-matrices , 2007 .
[9] Michael Lintner. Lösung der 2D Wellengleichung mittels hierarchischer Matrizen , 2002 .
[10] Ulrike Baur,et al. Control-Oriented Model Reduction for Parabolic Systems , 2008 .
[11] Lars Grasedyck,et al. Theorie und Anwendungen Hierarchischer Matrizen , 2006 .
[12] Boris N. Khoromskij,et al. Numerical Solution of the Hartree - Fock Equation in Multilevel Tensor-Structured Format , 2011, SIAM J. Sci. Comput..
[13] W. Hackbusch. A Sparse Matrix Arithmetic Based on $\Cal H$-Matrices. Part I: Introduction to ${\Cal H}$-Matrices , 1999, Computing.
[14] R. Morgan. Computing Interior Eigenvalues of Large Matrices , 1991 .
[15] M. Barel,et al. TRANSFORMING A HIERARCHICAL INTO A UNITARY-WEIGHT REPRESENTATION , 2008 .
[16] Steffen Börm,et al. Hybrid cross approximation of integral operators , 2005, Numerische Mathematik.
[17] S. Delvaux,et al. Transforming a hierarchical matrix into a unitary-weight representation , 2008 .
[18] Paul Willems,et al. On MR3-type Algorithms for the Tridiagonal Symmetric Eigenproblem and the Bidiagonal SVD , 2018 .
[19] Boris N. Khoromskij,et al. Solution of Large Scale Algebraic Matrix Riccati Equations by Use of Hierarchical Matrices , 2003, Computing.
[20] B. Parlett,et al. From qd to LR, or, how were the qd and LR algorithms discovered? , 2011 .
[21] Rajeev Motwani,et al. The PageRank Citation Ranking : Bringing Order to the Web , 1999, WWW 1999.
[22] Kai Sundmacher,et al. H-matrix methods for linear and quasi-linear integral operators appearing in population balances , 2007, Comput. Chem. Eng..
[23] M. SIAMJ.. THE RELATION BETWEEN THE QR AND LR ALGORITHMS∗ , 1998 .
[24] B. Parlett. The Symmetric Eigenvalue Problem , 1981 .
[25] Lin-Wang Wang,et al. Electronic Structure Pseudopotential Calculations of Large (-1000 Atoms ) Si Quantum Dots , 2001 .
[26] J. Bunch,et al. Some stable methods for calculating inertia and solving symmetric linear systems , 1977 .
[27] Leslie Greengard,et al. A fast algorithm for particle simulations , 1987 .
[28] Don Coppersmith,et al. Matrix multiplication via arithmetic progressions , 1987, STOC.
[29] Lin-Wang Wang,et al. Electronic Structure Pseudopotential Calculations of Large (.apprx.1000 Atoms) Si Quantum Dots , 1994 .
[30] Ronald Kriemann,et al. Hierarchical Matrices Based on a Weak Admissibility Criterion , 2004, Computing.
[31] Marc Van Barel,et al. A Cholesky LR algorithm for the positive definite symmetric diagonal-plus-semiseparable eigenproblem , 2008 .
[32] Robert A. van de Geijn,et al. Parallelizing the QR Algorithm for the Unsymmetric Algebraic Eigenvalue Problem: Myths and Reality , 1996, SIAM J. Sci. Comput..
[33] L. Grasedyck,et al. Domain decomposition based $${\mathcal H}$$ -LU preconditioning , 2009, Numerische Mathematik.
[34] Structures preserved by the QR-algorithm , 2006 .
[35] G. Golub,et al. Eigenvalue computation in the 20th century , 2000 .
[36] Shivkumar Chandrasekaran,et al. A Fast ULV Decomposition Solver for Hierarchically Semiseparable Representations , 2006, SIAM J. Matrix Anal. Appl..
[37] T. Chan. Rank revealing QR factorizations , 1987 .
[38] W. Hackbusch,et al. On the fast matrix multiplication in the boundary element method by panel clustering , 1989 .
[39] Andrew Knyazev,et al. Preconditioned Eigensolvers - an Oxymoron? , 1998 .
[40] E. Tyrtyshnikov. Mosaic-Skeleton approximations , 1996 .
[41] J. G. F. Francis,et al. The QR Transformation A Unitary Analogue to the LR Transformation - Part 1 , 1961, Comput. J..
[42] N. Higham. Computing the polar decomposition with applications , 1986 .
[43] K. Neymeyr. A geometric theory for preconditioned inverse iteration. I : Extrema of the Rayleigh quotient , 2001 .
[44] Gene H. Golub,et al. Matrix computations , 1983 .
[45] Wolfgang Hackbusch,et al. Construction and Arithmetics of H-Matrices , 2003, Computing.
[46] S Sauter,et al. Boundary elements methods. Analysis, numerics and implementation of fast algorithms. (Randelementmethoden. Analyse, Numerik und Implementierung schneller Algorithmen.) , 2004 .
[47] Eugene E. Tyrtyshnikov,et al. Breaking the Curse of Dimensionality, Or How to Use SVD in Many Dimensions , 2009, SIAM J. Sci. Comput..
[48] J. H. Wilkinson. The algebraic eigenvalue problem , 1966 .
[49] Gene H. Golub,et al. Calculating the singular values and pseudo-inverse of a matrix , 2007, Milestones in Matrix Computation.
[50] G. W. Stewart,et al. Four algorithms for the the efficient computation of truncated pivoted QR approximations to a sparse matrix , 1999, Numerische Mathematik.
[51] B. Parlett,et al. Accurate singular values and differential qd algorithms , 1994 .
[52] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[53] G. Schulz. Iterative Berechung der reziproken Matrix , 1933 .
[54] S. Chandrasekaran,et al. A fast adaptive solver for hierarchically semiseparable representations , 2005 .
[55] W. Hackbusch. Integral Equations: Theory and Numerical Treatment , 1995 .
[56] Peter Benner,et al. The Symplectic Eigenvalue Problem, the Butterfly Form, the SR Algorithm, and the Lanczos Method , 1998 .
[57] R. Vandebril,et al. An Implicit Q Theorem for Hessenberg-like Matrices , 2005 .
[58] Boris N. Khoromskij,et al. Use of tensor formats in elliptic eigenvalue problems , 2012, Numer. Linear Algebra Appl..
[59] J. G. F. Francis,et al. The QR Transformation - Part 2 , 1962, Comput. J..
[60] Marc Van Barel,et al. Divide and conquer algorithms for computing the eigendecomposition of symmetric diagonal-plus-semiseparable matrices , 2005, Numerical Algorithms.
[61] Peter Benner,et al. Two connections between the SR and HR eigenvalue algorithms , 1998 .
[62] A. Knyazev,et al. A Geometric Theory for Preconditioned Inverse Iteration. III:A Short and Sharp Convergence Estimate for Generalized EigenvalueProblems. , 2001 .
[63] Jianlin Xia,et al. Fast algorithms for hierarchically semiseparable matrices , 2010, Numer. Linear Algebra Appl..
[64] Timothy A. Davis,et al. The university of Florida sparse matrix collection , 2011, TOMS.
[65] J. Cuppen. A divide and conquer method for the symmetric tridiagonal eigenproblem , 1980 .
[66] Robert E. Mahony,et al. A Grassmann-Rayleigh Quotient Iteration for Computing Invariant Subspaces , 2002, SIAM Rev..
[67] Peter Benner,et al. On the QR decomposition of $${\fancyscript {H}}$$ -matrices , 2010, Computing.
[68] John R. Gilbert,et al. Sparse Matrices in MATLAB: Design and Implementation , 1992, SIAM J. Matrix Anal. Appl..
[69] Ilse C. F. Ipsen. A history of inverse iteration , 1994 .
[70] G. Golub,et al. A bibliography on semiseparable matrices* , 2005 .
[71] Dario Fasino. Rational Krylov matrices and QR steps on Hermitian diagonal-plus-semiseparable matrices , 2005, Numer. Linear Algebra Appl..
[72] David S. Watkins. QR -like algorithms for eigenvalue problems , 2000 .
[73] Mario Bebendorf,et al. Stabilized rounded addition of hierarchical matrices , 2007, Numer. Linear Algebra Appl..
[74] Heinz Rutishauser,et al. Bestimmung der Eigenwerte und Eigenvektoren einer Matrix mit Hilfe des Quotienten-Differenzen-Algorithmus , 1955 .
[75] Christian H. Bischof,et al. Algorithm 782: codes for rank-revealing QR factorizations of dense matrices , 1998, TOMS.
[76] Mario Bebendorf,et al. Mathematik in den Naturwissenschaften Leipzig Existence of H-Matrix Approximants to the Inverse FE-Matrix of Elliptic Operators with L ∞-Coefficients , 2003 .
[77] James Demmel,et al. Applied Numerical Linear Algebra , 1997 .
[78] Shivkumar Chandrasekaran,et al. A Hierarchical Semi-separable Moore-Penrose Equation Solver , 2006 .
[79] Sabine Le Borne,et al. Numerische Mathematik Domain decomposition based H-LU preconditioning , 2009 .
[80] Mario Bebendorf,et al. Approximation of boundary element matrices , 2000, Numerische Mathematik.
[81] T. Mach. Lösung von Randintegralgleichungen zur Bestimmung derKapazitätsmatrix von Elektrodenanordnungen mittels H -Arithmetik , 2008 .