A Universal Model for Discourse-Level Argumentation Analysis

The argumentative structure of texts is increasingly exploited for analysis tasks, for example, for stance classification or the assessment of argumentation quality. Most existing approaches, however, model only the local structure of single arguments. This article considers the question of how to capture the global discourse-level structure of a text for argumentation-related analyses. In particular, we propose to model the global structure as a flow of “task-related rhetorical moves,” such as discourse functions or aspect-based sentiment. By comparing the flow of a text to a set of common flow patterns, we map the text into the feature space of global structures, thus capturing its discourse-level argumentation. We show how to identify different types of flow patterns, and we provide evidence that they generalize well across different domains of texts. In our evaluation for two analysis tasks, the classification of review sentiment and the scoring of essay organization, the features derived from flow patterns prove both effective and more robust than strong baselines. We conclude with a discussion of the universality of modeling flow for discourse-level argumentation analysis.

[1]  William C. Mann,et al.  Rhetorical Structure Theory: Toward a functional theory of text organization , 1988 .

[2]  John M. Swales,et al.  Genre Analysis: English in Academic and Research Settings , 1993 .

[3]  Kevin D. Ashley,et al.  Predicting outcomes of case based legal arguments , 2003, ICAIL.

[4]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[5]  Bo Pang,et al.  Seeing Stars: Exploiting Class Relationships for Sentiment Categorization with Respect to Rating Scales , 2005, ACL.

[6]  DauméHal,et al.  Domain adaptation for statistical classifiers , 2006 .

[7]  Daniel Marcu,et al.  Domain Adaptation for Statistical Classifiers , 2006, J. Artif. Intell. Res..

[8]  Yi Mao,et al.  Isotonic Conditional Random Fields and Local Sentiment Flow , 2006, NIPS.

[9]  John Blitzer,et al.  Domain Adaptation with Structural Correspondence Learning , 2006, EMNLP.

[10]  Semire Dikli,et al.  An Overview of Automated Scoring of Essays. , 2006 .

[11]  Anthony Hunter,et al.  Elements of Argumentation , 2007, ECSQARU.

[12]  Sung-Hyuk Cha Comprehensive Survey on Distance/Similarity Measures between Probability Density Functions , 2007 .

[13]  Evgeniy Gabrilovich,et al.  Computing Semantic Relatedness Using Wikipedia-based Explicit Semantic Analysis , 2007, IJCAI.

[14]  Chris Reed,et al.  Argumentation Schemes , 2008 .

[15]  Chris Reed,et al.  Argumentation Schemes , 2008 .

[16]  Sylviane Granger,et al.  The International Corpus of Learner English. Version 2. Handbook and CD-Rom , 2009 .

[17]  Simone Teufel,et al.  Towards Domain-Independent Argumentative Zoning: Evidence from Chemistry and Computational Linguistics , 2009, EMNLP.

[18]  Simone Teufel Towards Discipline-Independent Argumentative Zoning : Evidence from Chemistry and Computational Linguistics , 2009 .

[19]  Christopher D. Manning,et al.  Introduction to Information Retrieval , 2010, J. Assoc. Inf. Sci. Technol..

[20]  Vincent Ng,et al.  Modeling Organization in Student Essays , 2010, EMNLP.

[21]  Marie-Francine Moens,et al.  Argumentation mining , 2011, Artificial Intelligence and Law.

[22]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[23]  Graeme Hirst,et al.  Classifying arguments by scheme , 2011, ACL.

[24]  Yejin Choi,et al.  Domain Independent Authorship Attribution without Domain Adaptation , 2011, RANLP.

[25]  Oscar Täckström,et al.  Discovering Fine-Grained Sentiment with Latent Variable Structured Prediction Models , 2011, ECIR.

[26]  James B. Freeman,et al.  Argument Structure: Representation and Theory , 2011, Argumentation Library.

[27]  Serena Villata,et al.  Combining Textual Entailment and Argumentation Theory for Supporting Online Debates Interactions , 2012, ACL.

[28]  Christopher Potts,et al.  Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank , 2013, EMNLP.

[29]  Benno Stein,et al.  A Review Corpus for Argumentation Analysis , 2014, CICLing.

[30]  P. Houtlosser,et al.  Considering Pragma-Dialectics , 2014 .

[31]  Diane J. Litman,et al.  Ontology-Based Argument Mining and Automatic Essay Scoring , 2014, ArgMining@ACL.

[32]  D. Walton,et al.  The impact of argumentation on artificial intelligence , 2014 .

[33]  Adam Faulkner,et al.  Automated Classification of Argument Stance in Student Essays: A Linguistically Motivated Approach with an Application for Supporting Argument Summarization , 2014 .

[34]  Claire Cardie,et al.  Identifying Appropriate Support for Propositions in Online User Comments , 2014, ArgMining@ACL.

[35]  Iryna Gurevych,et al.  Identifying Argumentative Discourse Structures in Persuasive Essays , 2014, EMNLP.

[36]  Benno Stein,et al.  Modeling Review Argumentation for Robust Sentiment Analysis , 2014, COLING.

[37]  Graeme Hirst,et al.  The Impact of Deep Hierarchical Discourse Structures in the Evaluation of Text Coherence , 2014, COLING.

[38]  Mitesh M. Khapra,et al.  Show Me Your Evidence - an Automatic Method for Context Dependent Evidence Detection , 2015, EMNLP.

[39]  Matthias Hagen,et al.  A Shared Task on Argumentation Mining in Newspaper Editorials , 2015, ArgMining@HLT-NAACL.

[40]  Henning Wachsmuth Text Analysis Pipelines: Towards Ad-hoc Large-Scale Text Mining , 2015 .

[41]  Manfred Stede,et al.  Joint prediction in MST-style discourse parsing for argumentation mining , 2015, EMNLP.

[42]  Vincent Ng,et al.  Modeling Argument Strength in Student Essays , 2015, ACL.

[43]  Iryna Gurevych,et al.  Exploiting Debate Portals for Semi-Supervised Argumentation Mining in User-Generated Web Discourse , 2015, EMNLP.

[44]  Stan Matwin,et al.  From Argumentation Mining to Stance Classification , 2015, ArgMining@HLT-NAACL.

[45]  Benno Stein,et al.  Sentiment Flow - A General Model of Web Review Argumentation , 2015, EMNLP.

[46]  Karin Baier,et al.  The Uses Of Argument , 2016 .

[47]  Matthias Hagen,et al.  Cross-Domain Mining of Argumentative Text through Distant Supervision , 2016, NAACL.