Solar-driven hydrogen production in green algae.

The twin problems of energy security and global warming make hydrogen an attractive alternative to traditional fossil fuels with its combustion resulting only in the release of water vapor. Biological hydrogen production represents a renewable source of the gas and can be performed by a diverse range of microorganisms from strict anaerobic bacteria to eukaryotic green algae. Compared to conventional methods for generating H(2), biological systems can operate at ambient temperatures and pressures without the need for rare metals and could potentially be coupled to a variety of biotechnological processes ranging from desalination and waste water treatment to pharmaceutical production. Photobiological hydrogen production by microalgae is particularly attractive as the main inputs for the process (water and solar energy) are plentiful. This chapter focuses on recent developments in solar-driven H(2) production in green algae with emphasis on the model organism Chlamydomonas reinhardtii. We review the current methods used to achieve sustained H(2) evolution and discuss possible approaches to improve H(2) yields, including the optimization of culturing conditions, reducing light-harvesting antennae and targeting auxiliary electron transport and fermentative pathways that compete with the hydrogenase for reductant. Finally, industrial scale-up is discussed in the context of photobioreactor design and the future prospects of the field are considered within the broader context of a biorefinery concept.

[1]  M. Ghirardi,et al.  A comparison of hydrogen photoproduction by sulfur-deprived Chlamydomonas reinhardtii under different growth conditions. , 2007, Journal of biotechnology.

[2]  A. Hemschemeier,et al.  Analytical approaches to photobiological hydrogen production in unicellular green algae , 2009, Photosynthesis Research.

[3]  Daniel G. Nocera,et al.  In Situ Formation of an Oxygen-Evolving Catalyst in Neutral Water Containing Phosphate and Co2+ , 2008, Science.

[4]  Jorge F. Reyes-Spindola,et al.  Radical SAM, a novel protein superfamily linking unresolved steps in familiar biosynthetic pathways with radical mechanisms: functional characterization using new analysis and information visualization methods. , 2001, Nucleic acids research.

[5]  P. Lindblad,et al.  A brief look at three decades of research on cyanobacterial hydrogen evolution , 2002 .

[6]  M. Frazier,et al.  Discovery of [NiFe] Hydrogenase Genes in Metagenomic DNA: Cloning and Heterologous Expression in Thiocapsa roseopersicina , 2009, Applied and Environmental Microbiology.

[7]  M. Ghirardi,et al.  Sustained hydrogen photoproduction by Chlamydomonas reinhardtii: Effects of culture parameters. , 2002 .

[8]  N. Tolbert,et al.  Anaerobic Formation of d-Lactate and Partial Purification and Characterization of a Pyruvate Reductase from Chlamydomonas reinhardtii. , 1985, Plant physiology.

[9]  A. Hemschemeier,et al.  A pyruvate formate lyase-deficient Chlamydomonas reinhardtii strain provides evidence for a link between fermentation and hydrogen production in green algae. , 2011, The Plant journal : for cell and molecular biology.

[10]  O. Pulz,et al.  Photobioreactors: production systems for phototrophic microorganisms , 2001, Applied Microbiology and Biotechnology.

[11]  S. Ball,et al.  Relationships between PSII-independent hydrogen bioproduction and starch metabolism as evidenced from isolation of starch catabolism mutants in the green alga Chlamydomonas reinhardtii , 2010 .

[12]  W. Martin,et al.  Pyruvate Formate-lyase and a Novel Route of Eukaryotic ATP Synthesis in Chlamydomonas Mitochondria* , 2006, Journal of Biological Chemistry.

[13]  J. Marín-Navarro,et al.  Hydrogen production by Chlamydomonas reinhardtii revisited: Rubisco as a biotechnological target , 2010 .

[14]  J. Rochaix,et al.  Role of Chloroplast Protein Kinase Stt7 in LHCII Phosphorylation and State Transition in Chlamydomonas , 2003, Science.

[15]  D. Bryant,et al.  Photosystem I/molecular wire/metal nanoparticle bioconjugates for the photocatalytic production of H2. , 2008, Journal of the American Chemical Society.

[16]  S. Mayfield,et al.  Production of therapeutic proteins in algae, analysis of expression of seven human proteins in the chloroplast of Chlamydomonas reinhardtii. , 2010, Plant biotechnology journal.

[17]  A. Scoma,et al.  Interplay between light intensity, chlorophyll concentration and culture mixing on the hydrogen production in sulfur‐deprived Chlamydomonas reinhardtii cultures grown in laboratory photobioreactors , 2009, Biotechnology and bioengineering.

[18]  M. Schroda,et al.  An inducible artificial microRNA system for Chlamydomonas reinhardtii confirms a key role for heat shock factor 1 in regulating thermotolerance , 2010, Current Genetics.

[19]  P. Hegemann,et al.  Nuclear gene targeting in Chlamydomonas as exemplified by disruption of the PHOT gene. , 2009, Gene.

[20]  A. Melis,et al.  Green alga hydrogen production: progress, challenges and prospects , 2002 .

[21]  M. Kitayama,et al.  A cDNA Clone Encoding a Ferredoxin-NADP+ Reductase from Chlamydomonas reinhardtii , 1994, Plant physiology.

[22]  Michael Hippler,et al.  Characterization of the Key Step for Light-driven Hydrogen Evolution in Green Algae* , 2009, The Journal of Biological Chemistry.

[23]  E. H. Harris The Chlamydomonas sourcebook , 2009 .

[24]  Michael Seibert,et al.  Demonstration of sustained hydrogen photoproduction by immobilized, sulfur-deprived Chlamydomonas reinhardtii cells , 2006 .

[25]  Yvain Nicolet,et al.  Maturation of [FeFe]-hydrogenases: Structures and mechanisms , 2010 .

[26]  Basar Uyar,et al.  Effect of light intensity, wavelength and illumination protocol on hydrogen production in photobioreactors , 2007 .

[27]  H. Gaffron,et al.  The mechanism of hydrogen photoproduction by several algae , 1972, Planta.

[28]  Michael E Webb,et al.  Thiamine biosynthesis in algae is regulated by riboswitches , 2007, Proceedings of the National Academy of Sciences.

[29]  N. Lewis,et al.  Powering the planet: Chemical challenges in solar energy utilization , 2006, Proceedings of the National Academy of Sciences.

[30]  A. Grossman,et al.  Sulfur: From Acquisition to Assimilation , 2009 .

[31]  Jana Stöckel,et al.  High rates of photobiological H2 production by a cyanobacterium under aerobic conditions. , 2010, Nature communications.

[32]  A. Melis,et al.  Probing green algal hydrogen production. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[33]  G. Peltier,et al.  Hydrogen production by Chlamydomonas reinhardtii: an elaborate interplay of electron sources and sinks , 2007, Planta.

[34]  J. Rochaix,et al.  The argininosuccinate lyase gene of Chlamydomonas reinhardtii: an important tool for nuclear transformation and for correlating the genetic and molecular maps of the ARG7 locus. , 1989, The EMBO journal.

[35]  S. Merchant,et al.  Enzymatic properties of the ferredoxin-dependent nitrite reductase from Chlamydomonas reinhardtii. Evidence for hydroxylamine as a late intermediate in ammonia production , 2009, Photosynthesis Research.

[36]  A. Tsygankov,et al.  Hydrogen production by photoautotrophic sulfur‐deprived Chlamydomonas reinhardtii pre‐grown and incubated under high light , 2009, Biotechnology and bioengineering.

[37]  C. Lambertz,et al.  Anaerobic Expression of the Ferredoxin-Encoding FDX5 Gene of Chlamydomonas reinhardtii Is Regulated by the Crr1 Transcription Factor , 2010, Eukaryotic Cell.

[38]  J. Rochaix Regulation of photosynthetic electron transport. , 2011, Biochimica et biophysica acta.

[39]  Debabrata Das,et al.  Recent trends on the development of photobiological processes and photobioreactors for the improvement of hydrogen production , 2010 .

[40]  S. Shima,et al.  The Crystal Structure of [Fe]-Hydrogenase Reveals the Geometry of the Active Site , 2008, Science.

[41]  Erwin Reisner,et al.  Visible light-driven H(2) production by hydrogenases attached to dye-sensitized TiO(2) nanoparticles. , 2009, Journal of the American Chemical Society.

[42]  William E. Newton,et al.  Nitrogen Fixation and Hydrogen Metabolism in Cyanobacteria , 2010, Microbiology and Molecular Biology Reviews.

[43]  P. Lefebvre,et al.  Stable nuclear transformation of Chlamydomonas using the Chlamydomonas gene for nitrate reductase , 1989, The Journal of cell biology.

[44]  K. Kreuzberg,et al.  Subcellular distribution of pyruvate-degrading enzymes in Chlamydomonas reinhardtii studied by an improved protoplast fractionation procedure , 1987 .

[45]  Michael Hippler,et al.  Characterizing the Anaerobic Response of Chlamydomonas reinhardtii by Quantitative Proteomics , 2010, Molecular & Cellular Proteomics.

[46]  F. Armstrong,et al.  How oxygen attacks [FeFe] hydrogenases from photosynthetic organisms , 2009, Proceedings of the National Academy of Sciences.

[47]  E. Issakidis‐Bourguet,et al.  Chlamydomonas reinhardtii: a model organism for the study of the thioredoxin family , 2003 .

[48]  G. Peltier,et al.  Auxiliary electron transport pathways in chloroplasts of microalgae , 2010, Photosynthesis Research.

[49]  E. Greenbaum,et al.  HYDROGEN and OXYGEN PHOTOPRODUCTION BY MARINE ALGAE * , 1983 .

[50]  P. Spolaore,et al.  Commercial applications of microalgae. , 2006, Journal of bioscience and bioengineering.

[51]  J. Rochaix,et al.  Involvement of state transitions in the switch between linear and cyclic electron flow in Chlamydomonas reinhardtii , 2002, EMBO reports.

[52]  A. Hemschemeier,et al.  A novel screening protocol for the isolation of hydrogen producing Chlamydomonas reinhardtii strains , 2008, BMC Plant Biology.

[53]  U. Johanningmeier,et al.  Herbicide Resistance and Supersensitivity in Ala250 or Ala251 Mutants of the D1 Protein in Chlamydomonas reinhardtii , 2000 .

[54]  S. Merchant,et al.  Copper Response Element and Crr1-Dependent Ni2+-Responsive Promoter for Induced, Reversible Gene Expression in Chlamydomonas reinhardtii , 2003, Eukaryotic Cell.

[55]  J. Rochaix,et al.  State transitions at the crossroad of thylakoid signalling pathways , 2010, Photosynthesis Research.

[56]  M. Fontecave,et al.  Biochemical characterization of the HydE and HydG iron‐only hydrogenase maturation enzymes from Thermatoga maritima , 2005, FEBS letters.

[57]  B. Dujon,et al.  Mitochondrial DNA of Chlamydomonas reinhardtii: the structure of the ends of the linear 15.8-kb genome suggests mechanisms for DNA replication , 1993, Current Genetics.

[58]  K Schulten,et al.  Molecular dynamics and experimental investigation of H(2) and O(2) diffusion in [Fe]-hydrogenase. , 2005, Biochemical Society transactions.

[59]  Olaf Kruse,et al.  Photosynthesis: a blueprint for solar energy capture and biohydrogen production technologies , 2005, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[60]  Giovanni Finazzi,et al.  The role of PGR5 in the redox poising of photosynthetic electron transport. , 2007, Biochimica et biophysica acta.

[61]  James A. Stapleton,et al.  A Cell-Free Microtiter Plate Screen for Improved [FeFe] Hydrogenases , 2010, PloS one.

[62]  Matteo Pellegrini,et al.  RNA-Seq Analysis of Sulfur-Deprived Chlamydomonas Cells Reveals Aspects of Acclimation Critical for Cell Survival[W] , 2010, Plant Cell.

[63]  M. Rögner,et al.  Photosynthesis as a power supply for (bio-)hydrogen production. , 2006, Trends in plant science.

[64]  Wenxu Zhou,et al.  The Metabolome of Chlamydomonas reinhardtii following Induction of Anaerobic H2 Production by Sulfur Depletion* , 2008, The Journal of Biological Chemistry.

[65]  E. Greenbaum,et al.  A new oxygen sensitivity and its potential application in photosynthetic H2 production , 2003 .

[66]  A. Hemschemeier,et al.  Multiple ferredoxin isoforms in Chlamydomonas reinhardtii - their role under stress conditions and biotechnological implications. , 2010, European journal of cell biology.

[67]  K. Vincent,et al.  Wiring an [FeFe]-hydrogenase with photosystem I for light-induced hydrogen production. , 2010, Biochemistry.

[68]  J. Wright,et al.  Hydrogen production by eukaryotic algae. , 1989, Biotechnology and bioengineering.

[69]  Laurent Cournac,et al.  Limiting steps of hydrogen production in Chlamydomonas reinhardtii and Synechocystis PCC 6803 as analysed by light-induced gas exchange transients , 2002 .

[70]  A. Darling,et al.  Phylogenetic and molecular analysis of hydrogen-producing green algae , 2009, Journal of experimental botany.

[71]  A. Carvalho,et al.  Microalgal Reactors: A Review of Enclosed System Designs and Performances , 2006, Biotechnology progress.

[72]  J. W. Peters,et al.  Engineering algae for biohydrogen and biofuel production. , 2009, Current opinion in biotechnology.

[73]  Wenxu Zhou,et al.  The Metabolome of Chlamydomonas reinhardtii following Induction of Anaerobic H2 Production by Sulfur Depletion* , 2009, The Journal of Biological Chemistry.

[74]  L E Brown,et al.  Introduction of exogenous DNA into Chlamydomonas reinhardtii by electroporation , 1991, Molecular and cellular biology.

[75]  Ardemis A. Boghossian,et al.  Photoelectrochemical complexes for solar energy conversion that chemically and autonomously regenerate , 2010, Nature chemistry.

[76]  K. Miyamoto Renewable biological systems for alternative sustainable energy production , 1997 .

[77]  Claude W. dePamphilis,et al.  The Chlamydomonas reinhardtii Plastid Chromosome , 2002, The Plant Cell Online.

[78]  Michael Seibert,et al.  A truncated antenna mutant of Chlamydomonas reinhardtii can produce more hydrogen than the parental strain , 2011 .

[79]  W. Lubitz,et al.  Isolation and first EPR characterization of the [FeFe]-hydrogenases from green algae. , 2008, Biochimica et biophysica acta.

[80]  T. Masuda,et al.  Truncated chlorophyll antenna size of the photosystems—a practical method to improve microalgal productivity and hydrogen production in mass culture , 2002 .

[81]  J. Rupprecht,et al.  Transcriptome for Photobiological Hydrogen Production Induced by Sulfur Deprivation in the Green Alga Chlamydomonas reinhardtii , 2008, Eukaryotic Cell.

[82]  S. Mayfield,et al.  Stable nuclear transformation of Chlamydomonas reinhardtii by using a C. reinhardtii gene as the selectable marker. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[83]  G. Peltier,et al.  The cyclic electron pathways around photosystem I in Chlamydomonas reinhardtii as determined in vivo by photoacoustic measurements of energy storage , 1994, Planta.

[84]  J. Benemann,et al.  Hydrogen biotechnology: Progress and prospects , 1996, Nature Biotechnology.

[85]  Michel Frey,et al.  Crystal structure of the nickel–iron hydrogenase from Desulfovibrio gigas , 1995, Nature.

[86]  M. Ghirardi,et al.  Application of gene-shuffling for the rapid generation of novel [FeFe]-hydrogenase libraries , 2006, Biotechnology Letters.

[87]  Christopher H. Chang,et al.  Brownian dynamics and molecular dynamics study of the association between hydrogenase and ferredoxin from Chlamydomonas reinhardtii. , 2008, Biophysical journal.

[88]  Quanxi Wang,et al.  Improved biohydrogen production with an expression of codon-optimized hemH and lba genes in the chloroplast of Chlamydomonas reinhardtii. , 2011, Bioresource technology.

[89]  Daeyeon Lee,et al.  Biologically templated photocatalytic nanostructures for sustained light-driven water oxidation. , 2010, Nature nanotechnology.

[90]  W. Martin,et al.  Bifunctional aldehyde/alcohol dehydrogenase (ADHE) in chlorophyte algal mitochondria , 2003, Plant Molecular Biology.

[91]  Juergen E. W. Polle,et al.  tla1, a DNA insertional transformant of the green alga Chlamydomonas reinhardtii with a truncated light-harvesting chlorophyll antenna size , 2003, Planta.

[92]  C. Faraloni,et al.  PHENOTYPIC CHARACTERIZATION AND HYDROGEN PRODUCTION IN CHLAMYDOMONAS REINHARDTII QB‐BINDING D1‐PROTEIN MUTANTS UNDER SULFUR STARVATION: CHANGES IN CHL FLUORESCENCE AND PIGMENT COMPOSITION 1 , 2010 .

[93]  John R. Benemann,et al.  Dunaliella salina (Chlorophyta) with small chlorophyll antenna sizes exhibit higher photosynthetic productivities and photon use efficiencies than normally pigmented cells , 1998, Journal of Applied Phycology.

[94]  Andrew R. Bassett,et al.  Highly specific gene silencing by artificial microRNAs in the unicellular alga Chlamydomonas reinhardtii. , 2009, The Plant journal : for cell and molecular biology.

[95]  M. Ghirardi,et al.  Microalgae: a green source of renewable H(2). , 2000, Trends in biotechnology.

[96]  M. Gibbs,et al.  H(2) and CO(2) Evolution by Anaerobically Adapted Chlamydomonas reinhardtii F-60. , 1982, Plant physiology.

[97]  Olaf Kruse,et al.  Improved Photobiological H2 Production in Engineered Green Algal Cells* , 2005, Journal of Biological Chemistry.

[98]  T. Zhao,et al.  Gene Silencing by Artificial Micrornas in Chlamydomonas , 2008 .

[99]  Nandita Sarkar,et al.  Tandem inverted repeat system for selection of effective transgenic RNAi strains in Chlamydomonas. , 2004, The Plant journal : for cell and molecular biology.

[100]  A. Grossman,et al.  The regulation of photosynthetic electron transport during nutrient deprivation in Chlamydomonas reinhardtii. , 1998, Plant physiology.

[101]  H. Fukuzawa,et al.  CO(2)-responsive transcriptional regulation of CAH1 encoding carbonic anhydrase is mediated by enhancer and silencer regions in Chlamydomonas reinhardtii. , 1999, Plant physiology.

[102]  J. Benemann,et al.  Look Back at the U.S. Department of Energy's Aquatic Species Program: Biodiesel from Algae; Close-Out Report , 1998 .

[103]  R. J. Spreitzer,et al.  Small-subunit cysteine-65 substitutions can suppress or induce alterations in the large-subunit catalytic efficiency and holoenzyme thermal stability of ribulose-1,5-bisphosphate carboxylase/oxygenase. , 2006, Archives of biochemistry and biophysics.

[104]  M. Seibert,et al.  Hydrogen photoproduction by nutrient‐deprived Chlamydomonas reinhardtii cells immobilized within thin alginate films under aerobic and anaerobic conditions , 2009, Biotechnology and bioengineering.

[105]  S. Merchant,et al.  PGRL1 Participates in Iron-induced Remodeling of the Photosynthetic Apparatus and in Energy Metabolism in Chlamydomonas reinhardtii* , 2009, The Journal of Biological Chemistry.

[106]  C. Remacle,et al.  A type II NAD(P)H dehydrogenase mediates light-independent plastoquinone reduction in the chloroplast of Chlamydomonas , 2008, Proceedings of the National Academy of Sciences.

[107]  P. Frymier,et al.  Self-organized photosynthetic nanoparticle for cell-free hydrogen production. , 2010, Nature nanotechnology.

[108]  A. Kaminski,et al.  Differential regulation of the Fe-hydrogenase during anaerobic adaptation in the green alga Chlamydomonas reinhardtii. , 2002, European journal of biochemistry.

[109]  Licheng Sun,et al.  A biomimetic pathway for hydrogen evolution from a model of the iron hydrogenase active site. , 2004, Angewandte Chemie.

[110]  T. Rauchfuss,et al.  Biomimetic hydrogen evolution catalyzed by an iron carbonyl thiolate. , 2001, Journal of the American Chemical Society.

[111]  Michael B. Pate,et al.  An economic survey of hydrogen production from conventional and alternative energy sources , 2010 .

[112]  Anja Doebbe,et al.  Functional integration of the HUP1 hexose symporter gene into the genome of C. reinhardtii: Impacts on biological H(2) production. , 2007, Journal of biotechnology.

[113]  M. Ghirardi,et al.  Oxygen sensitivity of algal H2- production , 1997 .

[114]  G. Peltier,et al.  Chlororespiration and cyclic electron flow around PSI during photosynthesis and plant stress response. , 2007, Plant, cell & environment.

[115]  A. Grossman,et al.  Identification and Regulation of Plasma Membrane Sulfate Transporters in Chlamydomonas1[W][OA] , 2010, Plant Physiology.

[116]  Antony R. Crofts,et al.  The concerted reduction of the high- and low-potential chains of the bf complex by plastoquinol , 1993 .

[117]  Halil Berberoglu,et al.  Radiation characteristics of Chlamydomonas reinhardtii CC125 and its truncated chlorophyll antenna transformants tla1, tlaX and tla1-CW+ , 2008 .

[118]  Malcolm Eames,et al.  Towards a sustainable hydrogen economy: A multi-criteria sustainability appraisal of competing hydrogen futures , 2007 .

[119]  S. Merchant,et al.  Pattern of Expression and Substrate Specificity of Chloroplast Ferredoxins from Chlamydomonas reinhardtii* , 2009, The Journal of Biological Chemistry.

[120]  J. Whelan,et al.  Characterization of mitochondrial alternative NAD(P)H dehydrogenases in Arabidopsis: intraorganelle location and expression. , 2006, Plant & cell physiology.

[121]  A. Melis,et al.  Solar energy conversion efficiencies in photosynthesis: Minimizing the chlorophyll antennae to maximize efficiency , 2009 .

[122]  A. Brennicke,et al.  Arabidopsis Genes Encoding Mitochondrial Type II NAD(P)H Dehydrogenases Have Different Evolutionary Origin and Show Distinct Responses to Light1 , 2003, Plant Physiology.

[123]  H. GAFFRON,et al.  Reduction of Carbon Dioxide with Molecular Hydrogen in Green Algæ , 1939, Nature.

[124]  S. Al-Abed,et al.  Reduced CO2/O2 specificity of ribulose-bisphosphate carboxylase/oxygenase in a temperature-sensitive chloroplast mutant of Chlamydomonas. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[125]  S. Ball,et al.  Hydrogen Production in Chlamydomonas: Photosystem II-Dependent and -Independent Pathways Differ in Their Requirement for Starch Metabolism1[W] , 2009, Plant Physiology.

[126]  M. Adams,et al.  The structure and mechanism of iron-hydrogenases. , 1990, Biochimica et biophysica acta.

[127]  M. Ghirardi,et al.  Expression of two [Fe]-hydrogenases in Chlamydomonas reinhardtii under anaerobic conditions. , 2003, European journal of biochemistry.

[128]  Debabrata Das,et al.  Improvement of fermentative hydrogen production: various approaches , 2004, Applied Microbiology and Biotechnology.

[129]  M. Spalding,et al.  Microalgal carbon-dioxide-concentrating mechanisms: Chlamydomonas inorganic carbon transporters. , 2007, Journal of experimental botany.

[130]  Serge Gambarelli,et al.  The [Fe-Fe]-Hydrogenase Maturation Protein HydF from Thermotoga maritima Is a GTPase with an Iron-Sulfur Cluster* , 2006, Journal of Biological Chemistry.

[131]  M. Ghirardi,et al.  Photoproduction of hydrogen by sulfur-deprived C. reinhardtii mutants with impaired Photosystem II photochemical activity , 2007, Photosynthesis Research.

[132]  Olaf Kruse,et al.  An economic and technical evaluation of microalgal biofuels , 2010, Nature Biotechnology.

[133]  Jean-Philippe Steyer,et al.  Hydrogen production from agricultural waste by dark fermentation: A review , 2010 .

[134]  Y. Nakamura,et al.  A large scale structural analysis of cDNAs in a unicellular green alga, Chlamydomonas reinhardtii. I. Generation of 3433 non-redundant expressed sequence tags. , 1999, DNA research : an international journal for rapid publication of reports on genes and genomes.

[135]  M. Ghirardi,et al.  Phenotypic diversity of hydrogen production in chlorophycean algae reflects distinct anaerobic metabolisms. , 2009, Journal of Biotechnology.

[136]  M. Ghirardi,et al.  The dependence of algal H2 production on Photosystem II and O2 consumption activities in sulfur-deprived Chlamydomonas reinhardtii cells. , 2003, Biochimica et biophysica acta.

[137]  A. Spek,et al.  Self-assembled biomimetic [2Fe2S]-hydrogenase-based photocatalyst for molecular hydrogen evolution , 2009, Proceedings of the National Academy of Sciences.

[138]  Govindjee,et al.  D1-arginine257 mutants (R257E, K, and Q) of Chlamydomonas reinhardtii have a lowered QB redox potential: analysis of thermoluminescence and fluorescence measurements , 2008, Photosynthesis Research.

[139]  Lutz Wobbe,et al.  Improvement of light to biomass conversion by de-regulation of light-harvesting protein translation in Chlamydomonas reinhardtii. , 2009, Journal of biotechnology.

[140]  T M Klein,et al.  Chloroplast transformation in Chlamydomonas with high velocity microprojectiles. , 1988, Science.

[141]  A. Hemschemeier,et al.  A novel, anaerobically induced ferredoxin in Chlamydomonas reinhardtii , 2009, FEBS letters.

[142]  Johannes Tramper,et al.  Enclosed outdoor photobioreactors: light regime, photosynthetic efficiency, scale-up, and future prospects. , 2003, Biotechnology and bioengineering.

[143]  A. Newton,et al.  Role of SulP, a nuclear-encoded chloroplast sulfate permease, in sulfate transport and H2evolution in Chlamydomonas reinhardtii , 2005, Photosynthesis Research.

[144]  O. Lenz,et al.  [NiFe]-Hydrogenases of Ralstonia eutropha H16: Modular Enzymes for Oxygen-Tolerant Biological Hydrogen Oxidation , 2006, Journal of Molecular Microbiology and Biotechnology.

[145]  P. Falkowski,et al.  Biophysical, Biochemical, and Physiological Characterization ofChlamydomonas reinhardtii Mutants with Amino Acid Substitutions at the Ala251 Residue in the D1 Protein That Result in Varying Levels of Photosynthetic Competence* , 1998, The Journal of Biological Chemistry.

[146]  A. Halpern,et al.  The Sorcerer II Global Ocean Sampling Expedition: Northwest Atlantic through Eastern Tropical Pacific , 2007, PLoS biology.

[147]  G. Marbán,et al.  Towards the hydrogen economy , 2007 .

[148]  Sara L. Zimmer,et al.  The Chlamydomonas Genome Reveals the Evolution of Key Animal and Plant Functions , 2007, Science.

[149]  Arthur R. Grossman,et al.  Anaerobic Acclimation in Chlamydomonas reinhardtii , 2007, Journal of Biological Chemistry.

[150]  Dae Sung Lee,et al.  Modeling and Optimization of Photosynthetic Hydrogen Gas Production by Green Alga Chlamydomonas reinhardtii in Sulfur‐Deprived Circumstance , 2006, Biotechnology progress.

[151]  A. Ben‐Amotz,et al.  H2 Metabolism in Photosynthetic Organisms: I. Dark H2 Evolution and Uptake by Algae and Mosses 1 , 1975 .

[152]  P. Lefebvre,et al.  Isolation and characterization of the nitrate reductase structural gene of Chlamydomonas reinhardtii. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[153]  C. Ugwu,et al.  Photobioreactors for mass cultivation of algae. , 2008, Bioresource technology.

[154]  Graham R Fleming,et al.  Toward an understanding of the mechanism of nonphotochemical quenching in green plants. , 2004, Biochemistry.

[155]  A. Tsygankov,et al.  The effect of light intensity on hydrogen production by sulfur-deprived Chlamydomonas reinhardtii. , 2004, Journal of biotechnology.

[156]  Y. Chisti,et al.  Scale-up of tubular photobioreactors , 2000, Journal of Applied Phycology.

[157]  Gilles Peltier,et al.  Potential for hydrogen production with inducible chloroplast gene expression in Chlamydomonas , 2007, Proceedings of the National Academy of Sciences.

[158]  L. Dirick,et al.  Physiology of starch storage in the monocellular alga Chlamydomonas reinhardtii , 1990 .

[159]  Dipankar Ghosh,et al.  Advances in fermentative biohydrogen production: the way forward? , 2009, Trends in biotechnology.

[160]  M. Borowitzka Commercial production of microalgae: ponds, tanks, tubes and fermenters , 1999 .

[161]  P. Lindblad,et al.  H2 production from marine and freshwater species of green algae during sulfur deprivation and considerations for bioreactor design , 2008 .

[162]  T. Antal,et al.  Relationships between H2 photoproduction and different electron transport pathways in sulfur-deprived Chlamydomonas reinhardtii , 2009 .

[163]  D. Baulcombe,et al.  RNA silencing of hydrogenase(-like) genes and investigation of their physiological roles in the green alga Chlamydomonas reinhardtii. , 2010, The Biochemical journal.

[164]  T. Kuang,et al.  Proteomic analysis of hydrogen photoproduction in sulfur-deprived Chlamydomonas cells. , 2010, Journal of proteome research.

[165]  A. Melis,et al.  Genetic and biochemical analysis of the TLA1 gene in Chlamydomonas reinhardtii , 2009, Planta.

[166]  Ufuk Gündüz,et al.  Towards a super H2 producer: Improvements in photofermentative biohydrogen production by genetic manipulations , 2010 .

[167]  Matthew C. Posewitz,et al.  Functional Studies of [FeFe] Hydrogenase Maturation in an Escherichia coli Biosynthetic System , 2006, Journal of bacteriology.

[168]  Christopher H. Chang,et al.  Atomic resolution modeling of the ferredoxin:[FeFe] hydrogenase complex from Chlamydomonas reinhardtii. , 2007, Biophysical journal.

[169]  A. Grossman,et al.  High-efficiency transformation of Chlamydomonas reinhardtii by electroporation. , 1998, Genetics.

[170]  C. Posten,et al.  Developments and perspectives of photobioreactors for biofuel production , 2010, Applied Microbiology and Biotechnology.

[171]  J. W. Peters,et al.  Stepwise [FeFe]-hydrogenase H-cluster assembly revealed in the structure of HydAΔEFG , 2010, Nature.

[172]  Simon Prochnik,et al.  Novel metabolism in Chlamydomonas through the lens of genomics. , 2007, Current opinion in plant biology.

[173]  H. Sakurai,et al.  Promoting R & D in Photobiological Hydrogen Production Utilizing Mariculture-Raised Cyanobacteria , 2007, Marine Biotechnology.

[174]  Cecilia Faraloni,et al.  Increased hydrogen photoproduction by means of a sulfur-deprived Chlamydomonas reinhardtii D1 protein mutant , 2009 .

[175]  A. Hemschemeier,et al.  Biochemical and Physiological Characterization of the Pyruvate Formate-Lyase Pfl1 of Chlamydomonas reinhardtii, a Typically Bacterial Enzyme in a Eukaryotic Alga , 2008, Eukaryotic Cell.

[176]  S. Oncel,et al.  “Effect of light intensity and the light: dark cycles on the long term hydrogen production of Chlamydomonas reinhardtii by batch cultures” , 2011 .

[177]  S. Cuiné,et al.  Characterization of Nda2, a Plastoquinone-reducing Type II NAD(P)H Dehydrogenase in Chlamydomonas Chloroplasts* , 2009, Journal of Biological Chemistry.

[178]  R. Loppes,et al.  Expression of the arylsulphatase reporter gene under the control of the nit1 promoter in Chlamydomonas reinhardtii , 1997, Current Genetics.

[179]  A. Hemschemeier,et al.  The exceptional photofermentative hydrogen metabolism of the green alga Chlamydomonas reinhardtii. , 2005, Biochemical Society transactions.

[180]  Michael Seibert,et al.  Effects of extracellular pH on the metabolic pathways in sulfur-deprived, H2-producing Chlamydomonas reinhardtii cultures. , 2003, Plant & cell physiology.

[181]  M. Posewitz,et al.  Multiple facets of anoxic metabolism and hydrogen production in the unicellular green alga Chlamydomonas reinhardtii. , 2011, The New phytologist.

[182]  Debabrata Das,et al.  Advances in biohydrogen production processes: An approach towards commercialization , 2009 .

[183]  Elizabeth H. Harris,et al.  Further characterization of the respiratory deficient dum-1 mutation of Chlamydomonas reinhardtii and its use as a recipient for mitochondrial transformation , 2004, Molecular and General Genetics MGG.

[184]  M. Schroda,et al.  The HSP70A promoter as a tool for the improved expression of transgenes in Chlamydomonas. , 2000, The Plant journal : for cell and molecular biology.

[185]  Nicholas Stern,et al.  Stern Review report on the economics of climate change , 2006 .

[186]  Kenji Takizawa,et al.  Isolation of the elusive supercomplex that drives cyclic electron flow in photosynthesis , 2010, Nature.

[187]  M. Ghirardi,et al.  Photobiological hydrogen-producing systems. , 2009, Chemical Society reviews.

[188]  K. Niyogi,et al.  Sensing and responding to excess light. , 2009, Annual review of plant biology.

[189]  J. W. Peters,et al.  Structure and mechanism of iron-only hydrogenases. , 1999, Current opinion in structural biology.

[190]  S. Masiero,et al.  A Complex Containing PGRL1 and PGR5 Is Involved in the Switch between Linear and Cyclic Electron Flow in Arabidopsis , 2008, Cell.

[191]  Y. Li-Beisson,et al.  Oil accumulation in the model green alga Chlamydomonas reinhardtii: characterization, variability between common laboratory strains and relationship with starch reserves , 2011, BMC biotechnology.

[192]  Michael Seibert,et al.  Continuous hydrogen photoproduction by Chlamydomonas reinhardtii , 2005, Applied biochemistry and biotechnology.

[193]  Olaf Kruse,et al.  Microalgal hydrogen production. , 2010, Current opinion in biotechnology.

[194]  René H. Wijffels,et al.  Photobiological hydrogen production: photochemical e)ciency and bioreactor design , 2002 .

[195]  J. Naber,et al.  Isolation, characterization and N-terminal amino acid sequence of hydrogenase from the green alga Chlamydomonas reinhardtii. , 1993, European journal of biochemistry.

[196]  Matthew C. Posewitz,et al.  Chapter 7 – Hydrogenases, Hydrogen Production, and Anoxia , 2009 .

[197]  Peter Lindblad,et al.  Energy biotechnology with cyanobacteria. , 2009, Current opinion in biotechnology.

[198]  Mark A. Winslow,et al.  HydF as a scaffold protein in [FeFe] hydrogenase H‐cluster biosynthesis , 2008, FEBS letters.

[199]  Z. Xiaoyan,et al.  Comparison of photobioreactors for cultivation of Undaria pinnatifida gametophytes , 2002, Biotechnology Letters.

[200]  Klaus Hellgardt,et al.  Design of a novel flat-plate photobioreactor system for green algal hydrogen production , 2011 .

[201]  Sriram Satagopan,et al.  Substitutions at the Asp-473 Latch Residue of Chlamydomonas Ribulosebisphosphate Carboxylase/Oxygenase Cause Decreases in Carboxylation Efficiency and CO2/O2 Specificity* , 2004, Journal of Biological Chemistry.

[202]  J. Komenda,et al.  Recent advances in understanding the assembly and repair of photosystem II. , 2010, Annals of botany.

[203]  Michael Seibert,et al.  Discovery of Two Novel Radical S-Adenosylmethionine Proteins Required for the Assembly of an Active [Fe] Hydrogenase* , 2004, Journal of Biological Chemistry.

[204]  J. Meurer,et al.  PGR5 Is Involved in Cyclic Electron Flow around Photosystem I and Is Essential for Photoprotection in Arabidopsis , 2002, Cell.

[205]  Michael Seibert,et al.  Hydrogen photoproduction under continuous illumination by sulfur-deprived, synchronous Chlamydomonas reinhardtii cultures , 2002 .

[206]  W. Martin,et al.  A proteomic survey of Chlamydomonas reinhardtii mitochondria sheds new light on the metabolic plasticity of the organelle and on the nature of the alpha-proteobacterial mitochondrial ancestor. , 2009, Molecular biology and evolution.

[207]  Clemens Posten,et al.  Design principles of photo‐bioreactors for cultivation of microalgae , 2009 .

[208]  S. Blanchette A hydrogen economy and its impact on the world as we know it , 2008 .

[209]  A. Melis Photosynthetic H2 metabolism in Chlamydomonas reinhardtii (unicellular green algae) , 2007, Planta.

[210]  K. Kindle,et al.  Nuclear and chloroplast transformation inChlamydomonas reinhardtii: strategies for genetic manipulation and gene expression , 1994, Journal of Applied Phycology.

[211]  A. Tsygankov,et al.  Laboratory Scale Photobioreactors , 2001, Applied Biochemistry and Microbiology.

[212]  Lu Zhang,et al.  Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. , 2000, Plant physiology.

[213]  Michael Seibert,et al.  Hydrogen production by sulfur-deprived Chlamydomonas reinhardtii under photoautotrophic conditions , 2006 .

[214]  V. Utgikar,et al.  Transition to hydrogen economy in the United States: A 2006 status report , 2007 .

[215]  M. Haumann,et al.  The structure of the active site H-cluster of [FeFe] hydrogenase from the green alga Chlamydomonas reinhardtii studied by X-ray absorption spectroscopy. , 2009, Biochemistry.

[216]  F. Healey Hydrogen evolution by several algae , 2004, Planta.

[217]  S. Merchant,et al.  Copper-responsive gene expression during adaptation to copper deficiency. , 1998, Methods in enzymology.

[218]  Lili Xu,et al.  Improved hydrogen production with expression of hemH and lba genes in chloroplast of Chlamydomonas reinhardtii. , 2010, Journal of biotechnology.

[219]  O. Kruse,et al.  Microalgae as substrates for fermentative biogas production in a combined biorefinery concept. , 2010, Journal of biotechnology.

[220]  B J Lemon,et al.  X-ray crystal structure of the Fe-only hydrogenase (CpI) from Clostridium pasteurianum to 1.8 angstrom resolution. , 1998, Science.

[221]  A. Melis,et al.  Biochemical and morphological characterization of sulfur-deprived and H2-producing Chlamydomonas reinhardtii (green alga) , 2002, Planta.

[222]  Karsten Niehaus,et al.  The Interplay of Proton, Electron, and Metabolite Supply for Photosynthetic H2 Production in Chlamydomonas reinhardtii* , 2010, The Journal of Biological Chemistry.

[223]  Natalia N. Ivanova,et al.  Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite , 2007, Nature.

[224]  A. McDowall,et al.  Engineering photosynthetic light capture: impacts on improved solar energy to biomass conversion. , 2007, Plant biotechnology journal.