Interaction of stress and growth in a fibrous tissue.

The influence of stress on the growth and remodeling of a soft biological tissue is considered. For this purpose, the soft tissue is idealized as a fiber network. The stress-free lengths of the fibers composing the network are not fixed as in an inert elastic solid, but are assumed to evolve as a result of growth and stress adaptation. Similarly, the topology of the fiber network may also evolve under the application of stress. A set of constitutive equations are proposed which relate the tissue stress to the deformation of the tissue as well as to its growth and microstructure. It is shown that distinctly different growth patterns which may arise during initial growth or wound healing can be modeled by the proposed mathematical analysis.