Repetition suppression and plasticity in the human brain

The suppression of neuronal responses to a repeated event is a ubiquitous phenomenon in neuroscience. However, the underlying mechanisms remain largely unexplored. The aim of this study was to examine the temporal evolution of experience-dependent changes in connectivity induced by repeated stimuli. We recorded event-related potentials (ERPs) during frequency changes of a repeating tone. Bayesian inversion of dynamic causal models (DCM) of ERPs revealed systematic repetition-dependent changes in both intrinsic and extrinsic connections, within a hierarchical cortical network. Critically, these changes occurred very quickly, over inter-stimulus intervals that implicate short-term synaptic plasticity. Furthermore, intrinsic (within-source) connections showed biphasic changes that were much faster than changes in extrinsic (between-source) connections, which decreased monotonically with repetition. This study shows that auditory perceptual learning is associated with repetition-dependent plasticity in the human brain. It is remarkable that distinct changes in intrinsic and extrinsic connections could be quantified so reliably and non-invasively using EEG.

[1]  A. Borst Seeing smells: imaging olfactory learning in bees , 1999, Nature Neuroscience.

[2]  Karl J. Friston,et al.  Bayesian Estimation of Dynamical Systems: An Application to fMRI , 2002, NeuroImage.

[3]  Karl J. Friston,et al.  Dynamic causal modelling of evoked responses: The role of intrinsic connections , 2007, NeuroImage.

[4]  Karl J. Friston,et al.  Motor practice and neurophysiological adaptation in the cerebellum: a positron tomography study , 1992, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[5]  Karl J. Friston,et al.  Comparing dynamic causal models , 2004, NeuroImage.

[6]  R. Desimone,et al.  Neural mechanisms for visual memory and their role in attention. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[7]  Karl J. Friston,et al.  Dynamic causal modelling of evoked potentials: A reproducibility study , 2007, NeuroImage.

[8]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[9]  G. Karmos,et al.  Adaptive modeling of the unattended acoustic environment reflected in the mismatch negativity event-related potential , 1996, Brain Research.

[10]  David Pérez-González,et al.  Detección de sonidos nuevos. ¿Existen múltiples manifestaciones de un mismo fenómeno? , 2008 .

[11]  I. Nelken,et al.  Processing of low-probability sounds by cortical neurons , 2003, Nature Neuroscience.

[12]  Karl J. Friston,et al.  Dynamic causal modelling , 2003, NeuroImage.

[13]  Josep Marco-Pallarés,et al.  Functional neural dynamics underlying auditory event-related N1 and N1 suppression response , 2007, NeuroImage.

[14]  P. Morosan,et al.  Probabilistic Mapping and Volume Measurement of Human Primary Auditory Cortex , 2001, NeuroImage.

[15]  Karl J. Friston,et al.  A neural mass model for MEG/EEG: coupling and neuronal dynamics , 2003, NeuroImage.

[16]  Karl J. Friston,et al.  Evoked brain responses are generated by feedback loops , 2007, Proceedings of the National Academy of Sciences.

[17]  Karl J. Friston,et al.  a K.E. Stephan, a R.B. Reilly, , 2007 .

[18]  Matthew C. Keller,et al.  Increased sensitivity in neuroimaging analyses using robust regression , 2005, NeuroImage.

[19]  M. Binder,et al.  Multiple mechanisms of spike-frequency adaptation in motoneurones , 1999, Journal of Physiology-Paris.

[20]  Erich Schröger,et al.  Prefrontal cortex involvement in preattentive auditory deviance detection: neuroimaging and electrophysiological evidence , 2003, NeuroImage.

[21]  M. Malmierca,et al.  Novelty detector neurons in the mammalian auditory midbrain , 2005, The European journal of neuroscience.

[22]  I. Nelken Processing of complex stimuli and natural scenes in the auditory cortex , 2004, Current Opinion in Neurobiology.

[23]  D. Vernon,et al.  Event-Related Brain Potential Correlates of Human Auditory Sensory Memory-Trace Formation , 2005, The Journal of Neuroscience.

[24]  T. Baldeweg,et al.  Mismatch negativity potentials and cognitive impairment in schizophrenia , 2004, Schizophrenia Research.

[25]  Karl J. Friston,et al.  Dynamic causal modeling , 2010, Scholarpedia.

[26]  R. Desimone Visual attention mediated by biased competition in extrastriate visual cortex. , 1998, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[27]  Philippe Kahane,et al.  Preictal short-term plasticity induced by intracerebral 1 Hz stimulation , 2008, NeuroImage.

[28]  Karl J. Friston Learning and inference in the brain , 2003, Neural Networks.

[29]  I. Winkler,et al.  Memory prerequisites of mismatch negativity in the auditory event-related potential (ERP). , 1993, Journal of experimental psychology. Learning, memory, and cognition.

[30]  Risto Näätänen,et al.  Electric brain response to sound repetition in humans: an index of long-term-memory – trace formation? , 2002, Neuroscience Letters.

[31]  Karl J. Friston,et al.  The functional anatomy of the MMN: A DCM study of the roving paradigm , 2008, NeuroImage.

[32]  Olivier David,et al.  Dynamic causal models and autopoietic systems. , 2007, Biological research.

[33]  Karl J. Friston,et al.  The mismatch negativity: A review of underlying mechanisms , 2009, Clinical Neurophysiology.

[34]  A. Dale,et al.  Human posterior auditory cortex gates novel sounds to consciousness. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[35]  Karl J. Friston,et al.  Dynamic causal modelling of evoked responses in EEG/MEG with lead field parameterization , 2006, NeuroImage.

[36]  Karl J. Friston,et al.  A theory of cortical responses , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[37]  Karl J. Friston,et al.  Mechanisms of evoked and induced responses in MEG/EEG , 2006, NeuroImage.

[38]  K. Alho,et al.  Separate Time Behaviors of the Temporal and Frontal Mismatch Negativity Sources , 2000, NeuroImage.

[39]  S N Davies,et al.  Paired‐pulse depression of monosynaptic GABA‐mediated inhibitory postsynaptic responses in rat hippocampus. , 1990, The Journal of physiology.

[40]  I. Nelken,et al.  Multiple Time Scales of Adaptation in Auditory Cortex Neurons , 2004, The Journal of Neuroscience.

[41]  P. Goldman-Rakic,et al.  Preface: Cerebral Cortex Has Come of Age , 1991 .

[42]  Ben H. Jansen,et al.  Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns , 1995, Biological Cybernetics.

[43]  Karl J. Friston,et al.  Modelling event-related responses in the brain , 2005, NeuroImage.

[44]  M. Scherg,et al.  Two bilateral sources of the late AEP as identified by a spatio-temporal dipole model. , 1985, Electroencephalography and clinical neurophysiology.

[45]  R. Henson,et al.  Electrophysiological and haemodynamic correlates of face perception, recognition and priming. , 2003, Cerebral cortex.

[46]  M S Malmierca,et al.  [Detection of novel sounds. Multiple manifestations of the same phenomenon?]. , 2008, Revista de neurologia.

[47]  Karl J. Friston,et al.  Bayesian estimation of synaptic physiology from the spectral responses of neural masses , 2008, NeuroImage.

[48]  E. Schröger,et al.  Differential Contribution of Frontal and Temporal Cortices to Auditory Change Detection: fMRI and ERP Results , 2002, NeuroImage.

[49]  R. Näätänen,et al.  Auditory frequency discrimination and event-related potentials. , 1985, Electroencephalography and clinical neurophysiology.

[50]  J M Badier,et al.  Evoked potentials recorded from the auditory cortex in man: evaluation and topography of the middle latency components. , 1994, Electroencephalography and clinical neurophysiology.

[51]  K. Reinikainen,et al.  Attentive novelty detection in humans is governed by pre-attentive sensory memory , 1994, Nature.

[52]  Risto Näätänen,et al.  Frequency Change Detection in Human Auditory Cortex , 1999, Journal of Computational Neuroscience.

[53]  T. Baldeweg Repetition effects to sounds: evidence for predictive coding in the auditory system , 2006, Trends in Cognitive Sciences.

[54]  Karl J. Friston,et al.  Evaluation of different measures of functional connectivity using a neural mass model , 2004, NeuroImage.

[55]  J J Eggermont,et al.  The Magnitude and Phase of Temporal Modulation Transfer Functions in Cat Auditory Cortex , 1999, The Journal of Neuroscience.

[56]  Claude Alain,et al.  I've heard it all before: perceptual invariance represented by early cortical auditory-evoked responses. , 2005, Brain research. Cognitive brain research.

[57]  W. Regehr,et al.  Determinants of the Time Course of Facilitation at the Granule Cell to Purkinje Cell Synapse , 1996, The Journal of Neuroscience.

[58]  Karl J. Friston,et al.  Dynamic Causal Modeling of the Response to Frequency Deviants , 2009, Journal of neurophysiology.

[59]  Karl J. Friston,et al.  Dynamic causal modeling of evoked responses in EEG and MEG , 2006, NeuroImage.

[60]  Karl J. Friston Hierarchical Models in the Brain , 2008, PLoS Comput. Biol..

[61]  I. Winkler,et al.  The concept of auditory stimulus representation in cognitive neuroscience. , 1999, Psychological bulletin.