Simultaneous stabilization using evolutionary programming and uniform design technique

The problem of simultaneous stabilization by a linear dynamic controller for a finite collection of plants is important in the area of robust control. It is still an open problem. Most of the current research results are about the existence conditions of the controller, but the computation for the design of the controller is very complicated, thus it is difficult to use for practical problems, especially in the case of multiple systems. A new evolutionary programming method based on a uniform design technique is proposed to solve this problem. Simulation results show that it is an acceptable method for this kind of hard problem.

[1]  B. Ross Barmish,et al.  An iterative design procedure for simultaneous stabilization of MIMO systems , 1987, Autom..

[2]  Malcolm C. Smith,et al.  On the order of stable compensators , 1986, Autom..

[3]  B. R. Barmish,et al.  An Iterative Design Procedure for Simultaneous Stabilization of Mimo Systems , 1987 .

[4]  Robert G. Reynolds,et al.  Knowledge-based function optimization using fuzzy cultural algorithms with evolutionary programming , 2001, IEEE Trans. Syst. Man Cybern. Part B.

[5]  K. Wei The solution of a transcendental problem and its applications in simultaneous stabilization problems , 1992 .

[6]  Yong-Yan Cao,et al.  Static output feedback simultaneous stabilization: ILMI approach , 1998 .

[7]  A. Saberi,et al.  Simultaneous stabilization with almost disturbance decoupling-uniform rank system , 1987, Autom..

[8]  Xinhe Xu,et al.  An efficient evolutionary programming algorithm , 1999, Comput. Oper. Res..

[9]  Walterio W. Mayol-Cuevas,et al.  Simultaneous stabilization using evolutionary strategies , 1997 .

[10]  J. Chow A pole-placement design approach for systems with multiple operating conditions , 1990 .

[11]  Vincent Blondel,et al.  Transcendence in Simultaneous Stabilization , 1996 .

[12]  Wei-Bing Gao,et al.  Algorithm for simultaneous stabilization of single-input systems via dynamic feedback , 1990 .

[13]  K. Fang,et al.  Application of Threshold-Accepting to the Evaluation of the Discrepancy of a Set of Points , 1997 .

[14]  Vincent D. Blondel A counterexample to a simultaneous stabilization condition for systems with identical unstable poles and zeros , 1991 .

[15]  James Lam,et al.  Brief On simultaneous H∞ control and strong H∞ stabilization , 2000 .

[16]  C. Ireland Fundamental concepts in the design of experiments , 1964 .

[17]  Andrey V. Savkin Simultaneous H ∞ control of a finite collection of linear plants with a single nonlinear digital controller , 1998 .

[18]  Mathukumalli Vidyasagar,et al.  Some results on simultaneous stabilization , 1984 .

[19]  S. Tarbouriech,et al.  Rank-one LMI approach to simultaneous stabilization of linear systems , 1999, 1999 European Control Conference (ECC).

[20]  A. De¸Bowski,et al.  Simultaneous stabilization of linear single-input/single-output plants , 1986 .

[21]  Lawrence J. Fogel,et al.  Artificial Intelligence through Simulated Evolution , 1966 .

[22]  Vincent D. Blondel,et al.  A sufficient condition for simultaneous stabilization , 1993, IEEE Trans. Autom. Control..

[23]  K Ang,et al.  A NOTE ON UNIFORM DISTRIBUTION AND EXPERIMENTAL DESIGN , 1981 .

[24]  William A. Wolovich,et al.  A nonlinear programming procedure and a necessary condition for the simultaneous stabilization of 3 or more linear systems , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[25]  Xin Yao,et al.  Evolutionary programming made faster , 1999, IEEE Trans. Evol. Comput..

[26]  Joe H. Chow,et al.  Simultaneous stabilization using stable system inversion , 1995, Autom..

[27]  M. Gevers,et al.  Simultaneous Stabilization of Three or More Plants: Conditions on the Positive Real Axis Do Not Suffice , 1994 .

[28]  Jong-Hwan Kim,et al.  Identification and control of systems with friction using accelerated evolutionary programming , 1996 .

[29]  Victor Sreeram,et al.  Optimal simultaneous stabilization of linear single-input systems via linear state feedback control , 1994 .

[30]  Thomas Bäck,et al.  Evolutionary computation: an overview , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[31]  Vincent D. Blondel,et al.  Simultaneous stabilizability of three linear systems is rationally undecidable , 1993, Math. Control. Signals Syst..

[32]  O. Toker,et al.  On the order of simultaneously stabilizing compensators , 1995, Proceedings of 1995 American Control Conference - ACC'95.

[33]  Se-Young Oh,et al.  A new mutation rule for evolutionary programming motivated from backpropagation learning , 2000, IEEE Trans. Evol. Comput..

[34]  Lawrence J. Fogel,et al.  Intelligence Through Simulated Evolution: Forty Years of Evolutionary Programming , 1999 .

[35]  Thomas Bäck,et al.  Evolutionary computation: comments on the history and current state , 1997, IEEE Trans. Evol. Comput..