Minimizing Kirchhoff index among graphs with a given vertex bipartiteness

The resistance distance between any two vertices of a graph G is defined as the effective resistance between them if each edge of G is replaced by a unit resistor. The Kirchhoff index Kf(G) is the sum of the resistance distances between all the pairs of vertices in G. The vertex bipartiteness vb of a graph G is the minimum number of vertices whose deletion from G results in a bipartite graph. In this paper, we characterize the graph having the minimum Kf(G) values among graphs with a fixed number n of vertices and fixed vertex bipartiteness, 1 ź v b ź n - 3 .

[1]  Dong Li,et al.  Complete characterization of bicyclic graphs with minimal Kirchhoff index , 2016, Discret. Appl. Math..

[2]  Jia-Bao Liu,et al.  On degree resistance distance of cacti , 2016, Discret. Appl. Math..

[3]  Yanfeng Luo,et al.  The Laplacian polynomial and Kirchhoff index of graphs derived from regular graphs , 2013, Discret. Appl. Math..

[4]  Douglas J. Klein,et al.  A recursion formula for resistance distances and its applications , 2013, Discret. Appl. Math..

[5]  István Lukovits,et al.  Extensions of the Wiener Number , 1996, J. Chem. Inf. Comput. Sci..

[6]  Qingying Deng,et al.  On the Kirchhoff index of the complement of a bipartite graph , 2013 .

[7]  Kinkar Chandra Das,et al.  Ordering connected graphs by their Kirchhoff indices , 2016, Int. J. Comput. Math..

[8]  Bojan Mohar,et al.  The Quasi-Wiener and the Kirchhoff Indices Coincide , 1996, J. Chem. Inf. Comput. Sci..

[9]  Jinde Cao,et al.  Applications of Laplacian spectra for n-prism networks , 2016, Neurocomputing.

[10]  Jia-Bao Liu,et al.  A unified approach to the asymptotic topological indices of various lattices , 2015, Appl. Math. Comput..

[11]  Jia-Bao Liu,et al.  The {1}-inverse of the Laplacian of subdivision-vertex and subdivision-edge coronae with applications , 2017 .

[12]  José Luis Palacios On the Kirchhoff index of graphs with diameter 2 , 2015, Discret. Appl. Math..

[13]  Qingying Deng,et al.  On extremal bipartite unicyclic graphs , 2014 .

[14]  Yujun Yang The Kirchhoff index of subdivisions of graphs , 2014, Discret. Appl. Math..

[15]  Jia-Bao Liu,et al.  Asymptotic incidence energy of lattices , 2015 .

[16]  Changjiang Bu,et al.  Some results on resistance distances and resistance matrices , 2015 .

[17]  Yi-Zheng Fan,et al.  Bipartiteness and the least eigenvalue of signless Laplacian of graphs , 2012 .

[18]  Yujun Yang,et al.  Relations Between Resistance Distances of a Graph and its Complement or its Contraction , 2014 .

[19]  Douglas J. Klein,et al.  Comparison theorems on resistance distances and Kirchhoff indices of S, T -isomers , 2014 .

[20]  Jinde Cao,et al.  The resistance distances of electrical networks based on Laplacian generalized inverse , 2015, Neurocomputing.

[21]  Domingos M. Cardoso,et al.  Spectra of graphs obtained by a generalization of the join graph operation , 2013, Discret. Math..

[22]  Margarida Mitjana,et al.  The Kirchhoff index of unicycle weighted chains , 2014, Electron. Notes Discret. Math..

[23]  Antoine Gerbaud,et al.  Spectra of generalized compositions of graphs and hierarchical networks , 2010, Discret. Math..

[24]  Lihua Feng,et al.  A note on the Kirchhoff index of bicyclic graphs , 2014, Ars Comb..

[25]  Anna Torriero,et al.  Bounds for the Kirchhoff index via majorization techniques , 2013, Journal of Mathematical Chemistry.

[26]  Jinde Cao,et al.  A note on ‘some physical and chemical indices of clique-inserted lattices’ , 2014 .

[27]  Jia-Bao Liu,et al.  Asymptotic Laplacian-energy-like invariant of lattices , 2014, Appl. Math. Comput..

[28]  Anna Torriero,et al.  Revisiting Bounds for the MultiplicativeDegree–Kirchhoff Index , 2016 .

[29]  Zuhe Zhang,et al.  Some physical and chemical indices of clique-inserted lattices , 2013, 1302.5932.

[30]  Charles Delorme,et al.  Laplacian eigenvectors and eigenvalues and almost equitable partitions , 2007, Eur. J. Comb..

[31]  Changjiang Bu,et al.  Resistance distance and Kirchhoff index of R-vertex join and R-edge join of two graphs , 2015, Discret. Appl. Math..

[32]  Changjiang Bu,et al.  Resistance distance in subdivision-vertex join and subdivision-edge join of graphs , 2014 .