Efferent association pathways originating in the caudal prefrontal cortex in the macaque monkey

The efferent association fibers from the caudal part of the prefrontal cortex to posterior cortical areas course via several pathways: the three components of the superior longitudinal fasciculus (SLF I, SLF II, and SLF III), the arcuate fasciculus (AF), the fronto‐occipital fasciculus (FOF), the cingulate fasciculus (CING F), and the extreme capsule (Extm C). Fibers from area 8Av course via FOF and SLF II, merging in the white matter of the inferior parietal lobule (IPL) and terminating in the caudal intraparietal sulcus (IPS). A group of these fibers turns ventrally to terminate in the caudal superior temporal sulcus (STS). Fibers from the rostral part of area 8Ad course via FOF and SLF II to the IPS and IPL and via the AF to the caudal superior temporal gyrus and STS. Some fibers from the rostral part of area 8Ad are conveyed to the medial parieto‐occipital region via FOF, to the STS via Extm C, and to the caudal cingulate gyrus via CING F. Fibers from area 8B travel via SLF I to the supplementary motor area and area 31 in the caudal dorsal cingulate region and via the CING F to cingulate areas 24 and 23 and the cingulate motor areas. Fibers from area 9/46d course via SLF I to the superior parietal lobule and medial parieto‐occipital region, via SLF II to the IPL. Fibers from area 9/46v travel via SLF III to the rostral IPL and the frontoparietal opercular region and via the CING F to the cingulate gyrus. J. Comp. Neurol. 498:227–251, 2006. © 2006 Wiley‐Liss, Inc.

[1]  D. Pandya,et al.  Anatomic Organization of the Basilar Pontine Projections from Prefrontal Cortices in Rhesus Monkey , 1997, The Journal of Neuroscience.

[2]  Michael Petrides,et al.  Frameless stereotaxy in the nonhuman primate , 2004, NeuroImage.

[3]  M. Petrides Comparative architectonic analysis of the human and the macaque frontal cortex , 1994 .

[4]  Deepak N. Pandya,et al.  Further observations on corticofrontal connections in the rhesus monkey , 1976, Brain Research.

[5]  D. Pandya,et al.  Projections to the frontal cortex from the posterior parietal region in the rhesus monkey , 1984, The Journal of comparative neurology.

[6]  M. Petrides Lateral prefrontal cortex: architectonic and functional organization , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[7]  H. Sakata,et al.  Selectivity for the shape, size, and orientation of objects for grasping in neurons of monkey parietal area AIP. , 2000, Journal of neurophysiology.

[8]  M. Mishkin,et al.  Dual streams of auditory afferents target multiple domains in the primate prefrontal cortex , 1999, Nature Neuroscience.

[9]  D. N. Pandya,et al.  Further observations on parieto-temporal connections in the rhesus monkey , 2004, Experimental Brain Research.

[10]  Elisabeth A. Murray,et al.  Relative contributions of SII and area 5 to tactile discrimination in monkeys , 1984, Behavioural Brain Research.

[11]  D. Pandya,et al.  Some observations on the course and composition of the cingulum bundle in the rhesus monkey , 1984, The Journal of comparative neurology.

[12]  P. Goldman-Rakic,et al.  Posterior parietal cortex in rhesus monkey: II. Evidence for segregated corticocortical networks linking sensory and limbic areas with the frontal lobe , 1989, The Journal of comparative neurology.

[13]  M. Petrides,et al.  Directed attention after unilateral frontal excisions in humans , 1998, Neuropsychologia.

[14]  H. Barbas Anatomic organization of basoventral and mediodorsal visual recipient prefrontal regions in the rhesus monkey , 1988, The Journal of comparative neurology.

[15]  M. Mishkin,et al.  OCCIPITOTEMPORAL CORTICOCORTICAL CONNECTIONS IN THE RHESUS MONKEY. , 1965, Experimental neurology.

[16]  J. Hyvärinen,et al.  I. Functional properties of neurons in lateral part of associative area 7 in awake monkeys , 1979, Experimental Brain Research.

[17]  J. Dejerine Anatomie des centres nerveux , 1895 .

[18]  P. Maquet,et al.  Orienting Attention to Locations in Perceptual Versus Mental Representations , 2004, Journal of Cognitive Neuroscience.

[19]  A. Hendrickson,et al.  The autoradiographic demonstration of axonal connections in the central nervous system. , 1972, Brain research.

[20]  V. Mountcastle,et al.  Posterior parietal association cortex of the monkey: command functions for operations within extrapersonal space. , 1975, Journal of neurophysiology.

[21]  A. Georgopoulos,et al.  Parietal cortex neurons of the monkey related to the visual guidance of hand movement , 1990, Experimental Brain Research.

[22]  D. Pandya,et al.  Cortico-cortical connections in the rhesus monkey. , 1969, Brain research.

[23]  Alan C. Evans,et al.  Multiple surface identification and matching in magnetic resonance images , 1994, Other Conferences.

[24]  D. Pandya,et al.  Afferent cortical connections and architectonics of the superior temporal sulcus and surrounding cortex in the rhesus monkey , 1978, Brain Research.

[25]  Leslie G. Ungerleider,et al.  Projections from inferior temporal cortex to prefrontal cortex via the uncinate fascicle in rhesus monkeys , 2004, Experimental Brain Research.

[26]  J. Kaas,et al.  Prefrontal connections of the parabelt auditory cortex in macaque monkeys , 1999, Brain Research.

[27]  R. Desimone,et al.  Neural mechanisms of selective visual attention. , 1995, Annual review of neuroscience.

[28]  D. Pandya,et al.  Prefrontostriatal connections in relation to cortical architectonic organization in rhesus monkeys , 1991, The Journal of comparative neurology.

[29]  D. Pandya,et al.  Prefrontal projections to the mediodorsal nucleus of the thalamus in the rhesus monkey , 1991, The Journal of comparative neurology.

[30]  D. Pandya,et al.  Fiber Pathways of the Brain , 2006 .

[31]  P. Yakovlev,et al.  Limbic nuclei of thalamus and connections of limbic cortex. III. Corticocortical connections of the anterior cingulate gyrus, the cingulum, and the subcallosal bundle in monkey. , 1961, Archives of neurology.

[32]  D. Pandya,et al.  Association fiber pathways to the frontal cortex from the superior temporal region in the rhesus monkey , 1988, The Journal of comparative neurology.

[33]  P. Szeszko,et al.  MRI atlas of human white matter , 2006 .

[34]  S. Wakana,et al.  MRI Atlas of Human White Matter , 2005 .

[35]  V. Gallese Action representaion and the inferior parietal lobule , 2000 .

[36]  F. Lacquaniti,et al.  Representing spatial information for limb movement: role of area 5 in the monkey. , 1995, Cerebral cortex.

[37]  Leslie G. Ungerleider,et al.  Pathways for motion analysis: Cortical connections of the medial superior temporal and fundus of the superior temporal visual areas in the macaque , 1990, The Journal of comparative neurology.

[38]  J. Hyvärinen,et al.  Functional properties of neurons in the temporo-parietal association cortex of awake monkey , 2004, Experimental Brain Research.

[39]  A. Toga,et al.  The Rhesus Monkey Brain in Stereotaxic Coordinates , 1999 .

[40]  D. Pandya,et al.  Intrinsic connections and architectonics of posterior parietal cortex in the rhesus monkey , 1982, The Journal of comparative neurology.

[41]  R. M. Siegel,et al.  Corticocortical connections of anatomically and physiologically defined subdivisions within the inferior parietal lobule , 1990, The Journal of comparative neurology.

[42]  M Corbetta,et al.  Frontoparietal cortical networks for directing attention and the eye to visual locations: identical, independent, or overlapping neural systems? , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[43]  M. Goldberg,et al.  The visual and frontal cortices. , 1989, Reviews of oculomotor research.

[44]  M. Mesulam Spatial attention and neglect: parietal, frontal and cingulate contributions to the mental representation and attentional targeting of salient extrapersonal events. , 1999, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[45]  D. Pandya,et al.  Intra- and interhemispheric projections of the precentral, premotor and arcuate areas in the rhesus monkey. , 1971, Brain research.

[46]  R. Knight,et al.  Prefrontal modulation of visual processing in humans , 2000, Nature Neuroscience.

[47]  R Kikinis,et al.  Disruption of attention to novel events after frontal lobe injury in humans , 2000, Journal of neurology, neurosurgery, and psychiatry.

[48]  Katherine M. Armstrong,et al.  Selective gating of visual signals by microstimulation of frontal cortex , 2003, Nature.

[49]  T. Powell,et al.  An anatomical study of converging sensory pathways within the cerebral cortex of the monkey. , 1970, Brain : a journal of neurology.

[50]  M. Petrides,et al.  Specialized systems for the processing of mnemonic information within the primate frontal cortex. , 1996, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[51]  H. Barbas,et al.  Organization of afferent input to subdivisions of area 8 in the rhesus monkey , 1981, The Journal of comparative neurology.

[52]  P. Goldman-Rakic,et al.  Auditory belt and parabelt projections to the prefrontal cortex in the Rhesus monkey , 1999, The Journal of comparative neurology.

[53]  D L Rosene,et al.  Cingulate cortex of the rhesus monkey: I. Cytoarchitecture and thalamic afferents , 1987, The Journal of comparative neurology.

[54]  R. Wurtz,et al.  The Neurobiology of Saccadic Eye Movements , 1989 .

[55]  D. Pandya,et al.  Architectonic parcellation of the temporal operculum in rhesus monkey and its projection pattern , 1973, Zeitschrift für Anatomie und Entwicklungsgeschichte.

[56]  Leslie G. Ungerleider,et al.  Multiple visual areas in the caudal superior temporal sulcus of the macaque , 1986, The Journal of comparative neurology.

[57]  G. Ettlinger,et al.  Impaired tactile learning and retention after removals of the second somatic sensory projection cortex (SII) in the monkey , 1976, Brain Research.