One-step production of highly anisotropic particles via a microfluidic method

[1]  S. Lee,et al.  Heterogeneous Capillary Interactions of Interface-Trapped Ellipsoid Particles Using the Trap-Release Method. , 2018, Langmuir : the ACS journal of surfaces and colloids.

[2]  Maofa Ge,et al.  Amphiphilic Janus Particles Generated via a Combination of Diffusion‐Induced Phase Separation and Magnetically Driven Dewetting and Their Synergistic Self‐Assembly , 2016, Advanced materials.

[3]  B. Park,et al.  Transition Behaviors of Configurations of Colloidal Particles at a Curved Oil-Water Interface , 2016, Materials.

[4]  B. Park,et al.  Heterogeneity of single-colloid self-potentials at an oil-water interface. , 2015, Soft matter.

[5]  Hua Dong,et al.  One-step fabrication of polymeric hybrid particles with core–shell, patchy, patchy Janus and Janus architectures via a microfluidic-assisted phase separation process , 2015 .

[6]  Y. Qiu,et al.  Microfluidic-based fabrication, characterization and magnetic functionalization of microparticles with novel internal anisotropic structure , 2015, Scientific Reports.

[7]  Daeyeon Lee,et al.  Effect of interaction heterogeneity on colloidal arrangements at a curved oil-water interface. , 2015, Soft matter.

[8]  Chengyou Kan,et al.  Preparation and Properties of Thermoplastic Expandable Microspheres With P(VDC-AN-MMA) Shell by Suspension Polymerization , 2015 .

[9]  Daeyeon Lee,et al.  Particles at fluid–fluid interfaces: From single-particle behavior to hierarchical assembly of materials , 2014 .

[10]  B. Park,et al.  Pairwise interactions of colloids in two-dimensional geometric confinement. , 2014, Soft matter.

[11]  Chengyou Kan,et al.  Preparation and properties of thermoexpandable polymeric microspheres , 2014 .

[12]  Saifullah Lone,et al.  Fabrication of polymeric Janus particles by droplet microfluidics , 2014 .

[13]  Dae Kun Hwang,et al.  One‐Step Two‐Dimensional Microfluidics‐Based Synthesis of Three‐Dimensional Particles , 2014, Advanced materials.

[14]  Daeyeon Lee,et al.  Spontaneous particle transport through a triple-fluid phase boundary. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[15]  J. Park,et al.  One-step preparation of magnetic Janus particles using controlled phase separation of polymer blends and nanoparticles , 2013 .

[16]  Andreas Walther,et al.  Janus particles: synthesis, self-assembly, physical properties, and applications. , 2013, Chemical reviews.

[17]  Eric P. Lewandowski,et al.  Capillary interactions between anisotropic particles , 2012 .

[18]  Daeyeon Lee,et al.  Configuration of nonspherical amphiphilic particles at a fluid–fluid interface , 2012 .

[19]  Shikuan Yang,et al.  Microfluidic synthesis of multifunctional Janus particles for biomedical applications. , 2012, Lab on a chip.

[20]  Daeyeon Lee,et al.  Equilibrium orientation of nonspherical Janus particles at fluid-fluid interfaces. , 2012, ACS Nano.

[21]  J. Burdick,et al.  Harnessing Interfacial Phenomena to Program the Release Properties of Hollow Microcapsules , 2012 .

[22]  Eric P. Lewandowski,et al.  Curvature-driven capillary migration and assembly of rod-like particles , 2011, Proceedings of the National Academy of Sciences.

[23]  Cai‐Feng Wang,et al.  Versatile Bifunctional Magnetic‐Fluorescent Responsive Janus Supraballs Towards the Flexible Bead Display , 2011, Advanced materials.

[24]  M. Jonsson,et al.  Increased onset temperature of expansion in thermally expandable microspheres through combination of crosslinking agents , 2011 .

[25]  Jaewon Yoon,et al.  Recent advances with anisotropic particles , 2011 .

[26]  Jianzhong Du,et al.  Anisotropic particles with patchy, multicompartment and Janus architectures: preparation and application. , 2011, Chemical Society reviews.

[27]  Magnus Jonsson,et al.  Thermally expandable microspheres with excellent expansion characteristics at high temperature , 2010 .

[28]  Erik Luijten,et al.  Janus Particle Synthesis and Assembly , 2010, Advanced materials.

[29]  Daeyeon Lee,et al.  Microfluidic fabrication of stable nanoparticle-shelled bubbles. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[30]  Chang-Soo Lee,et al.  Generation of Monodisperse Inorganic–Organic Janus Microspheres in a Microfluidic Device , 2009 .

[31]  David A. Weitz,et al.  Janus Supraparticles by Induced Phase Separation of Nanoparticles in Droplets , 2009 .

[32]  W. Moon,et al.  Various-Shaped Uniform Mn3O4 Nanocrystals Synthesized at Low Temperature in Air Atmosphere , 2009 .

[33]  J. Fransaer,et al.  Self-assembly and rheology of ellipsoidal particles at interfaces. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[34]  Dae Kun Hwang,et al.  Microfluidic-based synthesis of non-spherical magnetic hydrogel microparticles. , 2008, Lab on a chip.

[35]  B. Binks Colloidal particles at liquid interfaces. , 2008, Physical chemistry chemical physics : PCCP.

[36]  Liang-Yin Chu,et al.  Designer emulsions using microfluidics , 2008 .

[37]  Andreas Walther,et al.  Janus particles. , 2008, Soft matter.

[38]  S. Dietrich,et al.  Colloidal interactions at fluid interfaces. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[39]  J. Vermant,et al.  Direct measurements of the effects of salt and surfactant on interaction forces between colloidal particles at water-oil interfaces. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[40]  D. Tieleman,et al.  The MARTINI force field: coarse grained model for biomolecular simulations. , 2007, The journal of physical chemistry. B.

[41]  M. Parrinello,et al.  Canonical sampling through velocity rescaling. , 2007, The Journal of chemical physics.

[42]  G. Whitesides The origins and the future of microfluidics , 2006, Nature.

[43]  Wei Li,et al.  Janus and ternary particles generated by microfluidic synthesis: design, synthesis, and self-assembly. , 2006, Journal of the American Chemical Society.

[44]  M. Jonsson,et al.  Suspension polymerization of thermally expandable core/shell particles , 2006 .

[45]  Gerrit Groenhof,et al.  GROMACS: Fast, flexible, and free , 2005, J. Comput. Chem..

[46]  A. Yodh,et al.  Capillary interactions between anisotropic colloidal particles. , 2005, Physical review letters.

[47]  V. N. Paunov Novel Method for Determining the Three-Phase Contact Angle of Colloid Particles Adsorbed at Air−Water and Oil−Water Interfaces , 2003 .

[48]  S. Botchway,et al.  Measurement of long-range repulsive forces between charged particles at an oil-water interface. , 2002, Physical review letters.

[49]  D. Johannsmann,et al.  Long-range attraction between colloidal spheres at the air-water interface: the consequence of an irregular meniscus , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[50]  A. Hurd The electrostatic interaction between interfacial colloidal particles , 1985 .

[51]  S. G. Mason,et al.  Three-phase interactions in shear and electrical fields , 1970 .

[52]  S. Bon,et al.  Particle-stabilized emulsions and colloids : formation and applications , 2015 .

[53]  Kuniaki Nagayama,et al.  Capillary forces between colloidal particles , 1994 .