Quantum Computation and Shor's Factoring Algorithm

The eld of quantum computation studies the power of computers that are based on quantum-mechanical principles. We give a brief introduction to the model of quantum computation and to its main success so far: Peter Shor's eecient quantum algorithm for factoring integers.

[1]  E. T. An Introduction to the Theory of Numbers , 1946, Nature.

[2]  Donald Ervin Knuth,et al.  The Art of Computer Programming, Volume II: Seminumerical Algorithms , 1970 .

[3]  Adi Shamir,et al.  A method for obtaining digital signatures and public-key cryptosystems , 1978, CACM.

[4]  P. Benioff Quantum mechanical hamiltonian models of turing machines , 1982 .

[5]  R. Feynman Simulating physics with computers , 1999 .

[6]  D. Deutsch Quantum computational networks , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[7]  Kurt Mehlhorn,et al.  Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity , 1990 .

[8]  P. Boas Machine models and simulations , 1991 .

[9]  H. Lenstra,et al.  A rigorous time bound for factoring integers , 1992 .

[10]  Umesh V. Vazirani,et al.  Quantum complexity theory , 1993, STOC.

[11]  Andrew Chi-Chih Yao,et al.  Quantum Circuit Complexity , 1993, FOCS.

[12]  Carl Pomerance,et al.  The Development of the Number Field Sieve , 1994 .

[13]  D. Coppersmith An approximate Fourier transform useful in quantum factoring , 2002, quant-ph/0201067.

[14]  S. Lloyd Quantum-Mechanical Computers , 1995 .

[15]  Barenco,et al.  Elementary gates for quantum computation. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[16]  R. Cleve,et al.  Quantum algorithms revisited , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[17]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..