A moving-mesh gradient smoothing method for compressible CFD problems

A computational fluid dynamics (CFD) solver based on the gradient smoothing method (GSM) with moving mesh enabled is presented in this paper. The GSM uses unstructured meshes which could be generated and remeshed easily. The spatial derivatives of field variables at nodes and midpoints of cell edges are calculated using the gradient smoothing operations. The presented GSM codes use second-order Roes upwind flux difference splitting method and second-order 3-level backward differencing scheme for the compressible Navier–Stokes equations with moving mesh, and the second-order of accuracy for both the spatial and temporal discretization is ensured. The spatial discretization accuracy is verified using the method of manufactured solutions (MMS) on both structured and unstructured triangle meshes, and the results show that the observed order of accuracy achieves 2 even when highly distorted meshes are used. The temporal discretization accuracy is verified using the results with different time step lengths, and second-order accuracy is also obtained. Therefore, it is confirmed that the proposed GSM-CFD solver is a uniform second-order scheme.

[1]  L. Lucy A numerical approach to the testing of the fission hypothesis. , 1977 .

[2]  J. Halleux,et al.  An arbitrary lagrangian-eulerian finite element method for transient dynamic fluid-structure interactions , 1982 .

[3]  Thomas J. R. Hughes,et al.  Finite element methods for first-order hyperbolic systems with particular emphasis on the compressible Euler equations , 1984 .

[4]  J. Batina Unsteady Euler airfoil solutions using unstructured dynamic meshes , 1989 .

[5]  Tayfan E. Tezduyar,et al.  Stabilized Finite Element Formulations for Incompressible Flow Computations , 1991 .

[6]  S. Mittal,et al.  A finite element study of incompressible flows past oscillating cylinders and aerofoils , 1992 .

[7]  Marek Behr,et al.  Parallel finite-element computation of 3D flows , 1993, Computer.

[8]  Tayfun E. Tezduyar,et al.  SUPG finite element computation of compressible flows with the entropy and conservation variables formulations , 1993 .

[9]  Tayfun E. Tezduyar,et al.  Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces , 1994 .

[10]  V. Venkatakrishnan Convergence to steady state solutions of the Euler equations on unstructured grids with limiters , 1995 .

[11]  Tayfun E. Tezduyar,et al.  Flow simulation and high performance computing , 1996 .

[12]  C. W. Hirt,et al.  An Arbitrary Lagrangian-Eulerian Computing Method for All Flow Speeds , 1997 .

[13]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[14]  C. M. Dohring,et al.  Experimental and Computational Investigation of the Knoller-Betz Effect , 1998 .

[15]  Tayfun E. Tezduyar,et al.  CFD methods for three-dimensional computation of complex flow problems , 1999 .

[16]  Tayfun E. Tezduyar,et al.  Advanced mesh generation and update methods for 3D flow simulations , 1999 .

[17]  Charbel Farhat,et al.  Second-order time-accurate and geometrically conservative implicit schemes for flow computations on unstructured dynamic meshes , 1999 .

[18]  T. Tezduyar,et al.  A parallel 3D computational method for fluid-structure interactions in parachute systems , 2000 .

[19]  Tayfun E. Tezduyar,et al.  Fluid-structure interactions of a parachute crossing the far wake of an aircraft , 2001 .

[20]  Jiri Blazek,et al.  Computational Fluid Dynamics: Principles and Applications , 2001 .

[21]  Tayfun E. Tezduyar,et al.  Finite element methods for flow problems with moving boundaries and interfaces , 2001 .

[22]  Timothy G. Trucano,et al.  Verification and Validation in Computational Fluid Dynamics , 2002 .

[23]  C. Peskin The immersed boundary method , 2002, Acta Numerica.

[24]  Guirong Liu Mesh Free Methods: Moving Beyond the Finite Element Method , 2002 .

[25]  Charbel Farhat,et al.  Design and analysis of ALE schemes with provable second-order time-accuracy for inviscid and viscous flow simulations , 2003 .

[26]  T. Tezduyar,et al.  Mesh Moving Techniques for Fluid-Structure Interactions With Large Displacements , 2003 .

[27]  F P T Baaijens,et al.  A three-dimensional computational analysis of fluid-structure interaction in the aortic valve. , 2003, Journal of biomechanics.

[28]  Ramji Kamakoti,et al.  Fluid–structure interaction for aeroelastic applications , 2004 .

[29]  Christopher J. Roy,et al.  Verification of Euler/Navier–Stokes codes using the method of manufactured solutions , 2004 .

[30]  Tayfun E. Tezduyar,et al.  Automatic mesh update with the solid-extension mesh moving technique , 2004 .

[31]  Lucy T. Zhang,et al.  Immersed finite element method , 2004 .

[32]  Gianluca Iaccarino,et al.  IMMERSED BOUNDARY METHODS , 2005 .

[33]  Ning Qin,et al.  An efficient moving grid algorithm for large deformation , 2005 .

[34]  D. Peric,et al.  A computational framework for fluid–structure interaction: Finite element formulation and applications , 2006 .

[35]  Tayfun E. Tezduyar,et al.  Computation of Inviscid Supersonic Flows Around Cylinders and Spheres with the SUPG Formulation and YZβ Shock-Capturing , 2006 .

[36]  David Farrell,et al.  Immersed finite element method and its applications to biological systems. , 2006, Computer methods in applied mechanics and engineering.

[37]  Stefan Turek,et al.  A Monolithic FEM/Multigrid Solver for an ALE Formulation of Fluid-Structure Interaction with Applications in Biomechanics , 2006 .

[38]  Charbel Farhat,et al.  Provably second-order time-accurate loosely-coupled solution algorithms for transient nonlinear computational aeroelasticity , 2006 .

[39]  Dominique Pelletier,et al.  On the construction of manufactured solutions for one and two‐equation eddy‐viscosity models , 2007 .

[40]  Christopher J. Roy,et al.  Estimation of Discretization Errors Using the Method of Nearby Problems , 2007 .

[41]  Tayfun E. Tezduyar,et al.  Modelling of fluid–structure interactions with the space–time finite elements: Solution techniques , 2007 .

[42]  S. Sherwin,et al.  Comparison of various fluid-structure interaction methods for deformable bodies , 2007 .

[43]  Timothy G. Trucano,et al.  Verification and validation benchmarks , 2008 .

[44]  Gui-Rong Liu,et al.  A gradient smoothing method (GSM) for fluid dynamics problems , 2008 .

[45]  Andrew J. Sinclair,et al.  On the generation of exact solutions for evaluating numerical schemes and estimating discretization error , 2009, J. Comput. Phys..

[46]  Gui-Rong Liu,et al.  An adaptive gradient smoothing method (GSM) for fluid dynamics problems , 2009 .

[47]  D. A. Gottfried,et al.  Development and Application of an Arbitrary Lagrangian Eulerian Solver for Turbomachinery Aeromechanics , 2009 .

[48]  Dominique Pelletier,et al.  Perspective on the geometric conservation law and finite element methods for ALE simulations of incompressible flow , 2009, J. Comput. Phys..

[49]  Tayfun E. Tezduyar,et al.  Multiscale sequentially-coupled arterial FSI technique , 2010 .

[50]  Jeroen A. S. Witteveen,et al.  Explicit and Robust Inverse Distance Weighting Mesh Deformation for CFD , 2010 .

[51]  Ryo Torii,et al.  Role of 0D peripheral vasculature model in fluid–structure interaction modeling of aneurysms , 2010 .

[52]  Tayfun E. Tezduyar,et al.  Wall shear stress calculations in space–time finite element computation of arterial fluid–structure interactions , 2010 .

[53]  T. Tezduyar,et al.  Stabilized space–time computation of wind-turbine rotor aerodynamics , 2011 .

[54]  Yuri Bazilevs,et al.  Numerical-performance studies for the stabilized space–time computation of wind-turbine rotor aerodynamics , 2011 .

[55]  Guirong Liu,et al.  A novel linearly-weighted gradient smoothing method (LWGSM) in the simulation of fluid dynamics problem , 2011 .

[56]  Tayfun E. Tezduyar,et al.  Multiscale space–time fluid–structure interaction techniques , 2011 .

[57]  Tayfun E. Tezduyar,et al.  Space–time FSI modeling and dynamical analysis of spacecraft parachutes and parachute clusters , 2011 .

[58]  Jianyao Yao,et al.  AN IMMERSED SMOOTHED FINITE ELEMENT METHOD FOR FLUID–STRUCTURE INTERACTION PROBLEMS , 2011 .

[59]  Chunlei Liang,et al.  High-order accurate simulations of unsteady flow past plunging and pitching airfoils , 2011 .

[60]  Yuri Bazilevs,et al.  Space–Time and ALE-VMS Techniques for Patient-Specific Cardiovascular Fluid–Structure Interaction Modeling , 2012 .

[61]  Guirong Liu,et al.  Numerical modeling and simulation of pulsatile blood flow in rigid vessel using gradient smoothing method , 2012 .

[62]  Tayfun E. Tezduyar,et al.  SPACE–TIME FLUID–STRUCTURE INTERACTION METHODS , 2012 .

[63]  Tayfun E. Tezduyar,et al.  Computational Methods for Parachute Fluid–Structure Interactions , 2012 .

[64]  J-F Gerbeau,et al.  External tissue support and fluid–structure simulation in blood flows , 2012, Biomechanics and modeling in mechanobiology.

[65]  Guirong Liu,et al.  Immersed smoothed finite element method for two dimensional fluid–structure interaction problems , 2012 .

[66]  Eric Li,et al.  Simulation of steady and unsteady incompressible flow using gradient smoothing method (GSM) , 2012 .

[67]  Tayfun E. Tezduyar,et al.  Space-Time Computational Techniques for the Aerodynamics of Flapping Wings , 2012 .

[68]  Yuri Bazilevs,et al.  ALE-VMS AND ST-VMS METHODS FOR COMPUTER MODELING OF WIND-TURBINE ROTOR AERODYNAMICS AND FLUID–STRUCTURE INTERACTION , 2012 .