High-frame-rate liquid crystal phase modulator for augmented reality displays

ABSTRACT We optimise a new liquid crystal mixture with wide nematic range, high birefringence (Δn), high resistivity, moderate dielectric anisotropy (∆ε) and relatively low rotational viscosity for augmented reality display applications. High Δn and large Δε allow a thin cell gap (d ≈ 1.5 μm) to be employed in a reflective liquid-crystal-on-silicon (LCoS) device to achieve 2π phase change at 5 V and 2.87 ms average phase-to-phase response time at 40°C without complicated overdrive circuitry. Such a fast response time enables an LCoS panel to achieve 240 Hz frame rate for field sequential colour operation to avoid image flickering. Graphical Abstract

[1]  Ning Gan,et al.  The effect of lateral fluorination on the properties of phenyl-tolane liquid crystals , 2015 .

[2]  Kuan-Yu Chen,et al.  18.5L: Late-News Paper: Front-lit LCOS for Wearable Applications , 2014 .

[3]  Kuan-Hsu Fan-Chiang,et al.  Fringing-field effects on high-resolution liquid crystal microdisplays , 2005, Journal of Display Technology.

[4]  Ran Chen,et al.  Improving UV stability of tolane-liquid crystals in photonic applications by the ortho fluorine substitution , 2016 .

[5]  Ferroelectric Liquid Crystals in Microcapillaries: Observation of Different Electro-optic Switching Mechanisms. , 2017, The journal of physical chemistry. B.

[6]  Peng Sun,et al.  Computer-generated holographic near-eye display system based on LCoS phase only modulator , 2017, Optical Engineering + Applications.

[7]  Shin-Tson Wu,et al.  Recent advances in polymer network liquid crystal spatial light modulators , 2014 .

[8]  S. Tseng,et al.  Holographic polymer networks formed in liquid crystal phase modulators via a He-Ne laser to achieve ultra-fast optical response. , 2016, Optics express.

[9]  Juanli Li,et al.  New terphenyl liquid crystals terminated by 2-chloro-3,3,3-trifluoropropenyl group , 2017 .

[10]  Shin‐Tson Wu,et al.  Review on polymer-stabilized short-pitch cholesteric liquid crystal displays , 2017 .

[11]  R. Dabrowski,et al.  High Birefringence Isothiocyanato Tolane Liquid Crystals , 2003 .

[12]  Douglas Lanman,et al.  Focal surface displays , 2017, ACM Trans. Graph..

[13]  Jeroen Beeckman,et al.  Diffraction and fringing field effects in small pixel liquid crystal devices with homeotropic alignment , 2010 .

[14]  S T Wu Design of a liquid crystal based tunable electrooptic filter. , 1989, Applied optics.

[15]  Yun-Han Lee,et al.  Low voltage blue phase liquid crystal for spatial light modulators. , 2015, Optics letters.

[16]  Hoi Sing Kwok,et al.  Ferroelectric liquid crystals: Excellent tool for modern displays and photonics , 2015 .

[17]  Andreas Georgiou,et al.  Holographic near-eye displays for virtual and augmented reality , 2017, ACM Trans. Graph..

[18]  Wu Experimental confirmation of the Osipov-Terentjev theory on the viscosity of nematic liquid crystals. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[19]  Juanli Li,et al.  Highly fluorinated liquid crystals with wide nematic phase interval and good solubility , 2014 .

[20]  Ran Chen,et al.  Dielectric and optical anisotropy enhanced by 1,3-dioxolane terminal substitution on tolane-liquid crystals , 2015 .

[21]  I. Haller Thermodynamic and static properties of liquid crystals , 1975 .

[22]  Shin‐Tson Wu,et al.  Fringing-field effects on high-resolution liquid crystal microdisplays , 2005 .

[23]  D Cuypers,et al.  VAN LCOS Microdisplays: A Decade of Technological Evolution , 2011, Journal of Display Technology.

[24]  Shin-Tson Wu,et al.  Fast-response liquid crystal phase modulators for augmented reality displays , 2017 .

[25]  Wu,et al.  Birefringence dispersions of liquid crystals. , 1986, Physical review. A, General physics.

[26]  Shin-Tson Wu,et al.  Submillisecond-response nematic liquid crystals for augmented reality displays , 2017 .

[27]  Karl W. Beeson,et al.  61.5: LED‐Based Light‐Recycling Light Sources for Projection Displays , 2006 .

[28]  Shin-Tson Wu,et al.  Dual frequency liquid crystals: a review , 2009 .

[29]  Shin-Tson Wu,et al.  Fast-response liquid crystals for high image quality wearable displays , 2015 .

[30]  U Efron,et al.  Birefringence measurements of liquid crystals. , 1984, Applied optics.

[31]  Guanjun Tan,et al.  Optimized blue-phase liquid crystal for field-sequential-color displays , 2017 .