A simple bijection for the regions of the Shi arrangement of hyperplanes

Abstract The Shi arrangement Ln is the arrangement of affine hyperplanes in R n of the form xi − xj = 0 or 1, for 1 ⩽ i R n into (n + 1)n−1 regions, as was first proved by Shi. We give a simple bijective proof of this result. Our bijection generalizes easily to any subarrangement of Ln containing the hyperplanes xi − xj = 0 and to the extended Shi arrangements. It also implies the fact that the number of regions of Ln which are relatively bounded is (n − 1)n−1.

[1]  R. Stanley Hyperplane arrangements, interval orders, and trees. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[2]  Christos A. Athanasiadis Characteristic Polynomials of Subspace Arrangements and Finite Fields , 1996 .

[3]  Alexander Postnikov,et al.  Enumeration in algebra and geometry , 1997 .

[4]  G. Kreweras Une famille de polynômes ayant plusieurs propriétés énumeratives , 1980 .

[5]  Christos A. Athanasiadis A Class of Labeled Posets and the Shi Arrangement of Hyperplanes , 1997, J. Comb. Theory, Ser. A.

[6]  Richard P. Stanley,et al.  Hyperplane Arrangements, Parking Functions and Tree Inversions , 1998 .

[7]  T. Zaslavsky Facing Up to Arrangements: Face-Count Formulas for Partitions of Space by Hyperplanes , 1975 .

[8]  Christos A. Athanasiadis On Free Deformations of the Braid Arrangement , 1998, Eur. J. Comb..

[9]  Louis Solomon,et al.  The double Coxeter arrangement , 1997 .

[10]  Mark Haiman,et al.  Conjectures on the Quotient Ring by Diagonal Invariants , 1994 .

[11]  C. Mallows,et al.  The inversion enumerator for labeled trees , 1968 .

[12]  R. Carter,et al.  THE KAZHDAN‐LUSZTIG CELLS IN CERTAIN AFFINE WEYL GROUPS (Lecture Notes in Mathematics 1179) , 1987 .

[13]  David S. Johnson,et al.  Dimacs series in discrete mathematics and theoretical computer science , 1996 .

[14]  Christos A. Athanasiadis,et al.  Algebraic combinatorics of graph spectra, subspace arrangements and Tutte polynomials , 1996 .

[15]  Richard P. Stanley,et al.  Parking functions and noncrossing partitions , 1996, Electron. J. Comb..

[16]  John Riordan,et al.  Mappings of acyclic and parking functions , 1973 .

[17]  Jian-yi Shi,et al.  The Kazhdan-Lusztig cells in certain affine Weyl groups , 1986 .

[18]  A. Konheim,et al.  An Occupancy Discipline and Applications , 1966 .

[19]  Victor Reiner,et al.  Free arrangements and rhombic tilings , 1996, Discret. Comput. Geom..

[20]  Patrick Headley,et al.  Reduced expressions in infinite Coxeter groups. , 1994 .

[21]  Jian-yi Shi,et al.  Sign Types Corresponding to an Affine Weyl Group , 1987 .

[22]  Richard P. Stanley,et al.  Deformations of Coxeter Hyperplane Arrangements , 2000, J. Comb. Theory, Ser. A.