Optimal biased estimation using Lehmann-unbiasedness
暂无分享,去创建一个
[1] Steven Kay,et al. Unbiased estimation of the phase of a sinusoid , 2004, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing.
[2] Joseph Tabrikian,et al. Non-Bayesian Periodic Cramér-Rao Bound , 2013, IEEE Transactions on Signal Processing.
[3] Alfred O. Hero,et al. Exploring estimator bias-variance tradeoffs using the uniform CR bound , 1996, IEEE Trans. Signal Process..
[4] Eric Chaumette,et al. New Results on Deterministic Cramér–Rao Bounds for Real and Complex Parameters , 2012, IEEE Transactions on Signal Processing.
[5] C. Stein,et al. Estimation with Quadratic Loss , 1992 .
[6] Joseph Tabrikian,et al. New observations on efficiency of variance estimation of white Gaussian signal with unknown mean , 2016, 2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM).
[7] Alfred O. Hero,et al. Ieee Transactions on Image Processing: to Appear Penalized Maximum-likelihood Image Reconstruction Using Space-alternating Generalized Em Algorithms , 2022 .
[8] Joseph Tabrikian,et al. Cyclic Barankin-Type Bounds for Non-Bayesian Periodic Parameter Estimation , 2014, IEEE Transactions on Signal Processing.
[9] S. Kay. Fundamentals of statistical signal processing: estimation theory , 1993 .
[10] Alfred O. Hero,et al. Robust Shrinkage Estimation of High-Dimensional Covariance Matrices , 2010, IEEE Transactions on Signal Processing.
[11] Yonina C. Eldar,et al. Rethinking biased estimation [Lecture Notes] , 2008, IEEE Signal Processing Magazine.
[12] Eric Chaumette,et al. A New Barankin Bound Approximation for the Prediction of the Threshold Region Performance of Maximum Likelihood Estimators , 2008, IEEE Transactions on Signal Processing.
[13] Joseph Tabrikian,et al. On the limitations of Barankin type bounds for MLE threshold prediction , 2015, Signal Process..
[14] Yonina C. Eldar,et al. Robust mean-squared error estimation in the presence of model uncertainties , 2005, IEEE Transactions on Signal Processing.
[15] R. A. Gaskins,et al. Nonparametric roughness penalties for probability densities , 2022 .
[16] B. Blight. Some General Results on Reduced Mean Square Error Estimation , 1971 .
[17] Peter Jancovic,et al. Acoustic Recognition of Multiple Bird Species Based on Penalized Maximum Likelihood , 2015, IEEE Signal Processing Letters.
[18] Dengyuan Xu,et al. Weighted Linear Least Square Localization Algorithms for Received Signal Strength , 2013, Wirel. Pers. Commun..
[19] T. Kariya. Equivariant Estimation in a Model with an Ancillary Statistic , 1989 .
[20] Zhi Ding,et al. Distance Estimation From Received Signal Strength Under Log-Normal Shadowing: Bias and Variance , 2008, IEEE Signal Processing Letters.
[21] H. Cramér. A contribution to the theory of statistical estimation , 1946 .
[22] Joseph Tabrikian,et al. Cyclic Cramér-Rao-type bounds for periodic parameter estimation , 2016, 2016 19th International Conference on Information Fusion (FUSION).
[23] Yonina C. Eldar. Rethinking Biased Estimation: Improving Maximum Likelihood and the Cramér-Rao Bound , 2008, Found. Trends Signal Process..
[24] Joseph Tabrikian,et al. General Classes of Performance Lower Bounds for Parameter Estimation—Part I: Non-Bayesian Bounds for Unbiased Estimators , 2010, IEEE Transactions on Information Theory.
[25] Joseph Tabrikian,et al. Performance bounds for constrained parameter estimation , 2012, 2012 IEEE 7th Sensor Array and Multichannel Signal Processing Workshop (SAM).
[26] H. V. Trees,et al. Exploring Estimator BiasVariance Tradeoffs Using the Uniform CR Bound , 2007 .
[27] E. Lehmann. A General Concept of Unbiasedness , 1951 .
[28] Joseph Tabrikian,et al. Uniformly Best Biased Estimators in Non-Bayesian Parameter Estimation , 2011, IEEE Transactions on Information Theory.
[29] Yonina C. Eldar. MSE Bounds With Affine Bias Dominating the CramÉr–Rao Bound , 2008, IEEE Transactions on Signal Processing.
[30] Joseph Tabrikian,et al. A risk-unbiased bound for information fusion with nuisance parameters , 2016, 2016 19th International Conference on Information Fusion (FUSION).
[31] C. R. Rao,et al. Information and the Accuracy Attainable in the Estimation of Statistical Parameters , 1992 .
[32] Petre Stoica,et al. On biased estimators and the unbiased Cramér-Rao lower bound , 1990, Signal Process..
[33] Jonathan S. Abel,et al. A bound on mean-square-estimate error , 1993, IEEE Trans. Inf. Theory.
[34] Jeffrey A. Fessler. Mean and variance of implicitly defined biased estimators (such as penalized maximum likelihood): applications to tomography , 1996, IEEE Trans. Image Process..
[35] Yonina C. Eldar. Uniformly Improving the CramÉr-Rao Bound and Maximum-Likelihood Estimation , 2006, IEEE Transactions on Signal Processing.
[36] Yonina C. Eldar. Minimum variance in biased estimation: bounds and asymptotically optimal estimators , 2004, IEEE Transactions on Signal Processing.
[37] Joseph Tabrikian,et al. Bayesian Estimation in the Presence of Deterministic Nuisance Parameters—Part I: Performance Bounds , 2015, IEEE Transactions on Signal Processing.
[38] Lang Tong,et al. Estimation After Parameter Selection: Performance Analysis and Estimation Methods , 2015, IEEE Transactions on Signal Processing.
[39] Joseph Tabrikian,et al. Mean-cyclic-error lower bounds via integral transform of likelihood-ratio function , 2016, 2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM).
[40] Tirza Routtenberg. Two-stage estimation after parameter selection , 2016, 2016 IEEE Statistical Signal Processing Workshop (SSP).
[41] Joseph Tabrikian,et al. A risk-unbiased approach to a new Cramér-Rao bound , 2016, 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
[42] E. Barankin. Locally Best Unbiased Estimates , 1949 .