Lambek calculus is NP-complete

We prove that for both the Lambek calculus L and the Lambek calculus allowing empty premises L* the derivability problem is NP-complete. It follows that also for the multiplicative fragments of cyclic linear logic and noncommutative linear logic the derivability problem is NP-complete.

[1]  David N. Yetter,et al.  Quantales and (noncommutative) linear logic , 1990, Journal of Symbolic Logic.

[2]  Wojciech Buszkowski,et al.  Mathematical Linguistics and Proof Theory , 1997, Handbook of Logic and Language.

[3]  J. Lambek The Mathematics of Sentence Structure , 1958 .

[4]  Michael Moortgat,et al.  Categorial Type Logics , 1997, Handbook of Logic and Language.

[5]  Philippe de Groote,et al.  The Non-Associative Lambek Calculus with Product in Polynomial Time , 1999, TABLEAUX.

[6]  Erik Aarts,et al.  Proving theorems of the second order Lambek calculus in polynomial time , 1994, Stud Logica.

[7]  J. Girard,et al.  Advances in Linear Logic , 1995 .

[8]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[9]  Patrick Lincoln,et al.  Constant-Only Multiplicative Linear Logic is NP-Complete , 1992, Theor. Comput. Sci..

[10]  Gerald Penn,et al.  A Graph-Theoretic Approach to Sequent Derivability in the Lambek Calculus , 2004, FGMOL.

[11]  J.F.A.K. van Benthem,et al.  Language in Action: Categories, Lambdas and Dynamic Logic , 1997 .

[12]  Mati Pentus Equivalence of Multiplicative Fragments of Cyclic Linear Logic and Noncommutative Linear Logic , 1997, LFCS.

[13]  Max I. Kanovich Horn programming in linear logic is NP-complete , 1992, [1992] Proceedings of the Seventh Annual IEEE Symposium on Logic in Computer Science.

[14]  Johan van Benthem,et al.  Handbook of Logic and Language , 1996 .

[15]  Erik Aarts,et al.  Non-associative Lambek Categorial Grammar in Polynomial Time , 1995, Math. Log. Q..

[16]  Roy Dyckhoff Automated Reasoning with Analytic Tableaux and Related Methods , 2000, Lecture Notes in Computer Science.

[17]  Dirk Roorda,et al.  Resource Logics : Proof-Theoretical Investigations , 1991 .

[18]  P. Lincoln Deciding provability of linear logic formulas , 1995 .

[19]  François Métayer Polynomial Equivalence Among Systems LLNC, LLNCa and LLNC0 , 1999, Theor. Comput. Sci..

[20]  Philippe de Groote An Algebraic Correctness Criterion for Intuitionistic Proof-Nets , 1997, LFCS.

[21]  G. Morrill Memoisation of categorial proof nets: parallelism in categorial processing , 1996 .

[22]  Mati Pentus Free monoid completeness of the Lambek calculus allowing empty premises , 1998 .

[23]  B. Carpenter,et al.  Type-Logical Semantics , 1997 .

[24]  V. Michele Abrusci Phase Semantics and Sequent Calculus for Pure Noncommutative Classical Linear Propositional Logic , 1991, J. Symb. Log..

[25]  François Lamarche,et al.  Proof Nets for the Lambek Calculus - an overview , 1998 .