The tensor algebra compiler
暂无分享,去创建一个
Shoaib Kamil | David Lugato | Saman P. Amarasinghe | Stephen Chou | Fredrik Kjolstad | Fredrik Kjolstad | S. Kamil | Stephen Chou | D. Lugato | Shoaib Kamil
[1] M. M. G. Ricci,et al. Méthodes de calcul différentiel absolu et leurs applications , 1900 .
[2] A. Einstein. The Foundation of the General Theory of Relativity , 1916 .
[3] Kenneth E. Iverson,et al. A programming language , 1899, AIEE-IRE '62 (Spring).
[4] R. Feynman,et al. The Feynman Lectures on Physics Addison-Wesley Reading , 1963 .
[5] J. W. Walker,et al. Direct solutions of sparse network equations by optimally ordered triangular factorization , 1967 .
[6] John Michael McNamee. Algorithm 408: a sparse matrix package (part I) [F4] , 1971, CACM.
[7] R. Leighton,et al. Feynman Lectures on Physics , 1971 .
[8] Donald E. Knuth,et al. The art of computer programming: sorting and searching (volume 3) , 1973 .
[9] Donald E. Knuth,et al. The Art of Computer Programming: Volume 3: Sorting and Searching , 1998 .
[10] Fred G. Gustavson,et al. Two Fast Algorithms for Sparse Matrices: Multiplication and Permuted Transposition , 1978, TOMS.
[11] L. Mullin. A mathematics of arrays , 1988 .
[12] Monica S. Lam,et al. A data locality optimizing algorithm , 1991, PLDI '91.
[13] Aart J. C. Bik,et al. Compilation techniques for sparse matrix computations , 1993, ICS '93.
[14] Aart J. C. Bik,et al. On Automatic Data Structure Selection and Code Generation for Sparse Computations , 1993, LCPC.
[15] Lambertus Hesselink,et al. The topology of symmetric, second-order tensor fields , 1994, VIS '94.
[16] Ed Anderson,et al. LAPACK Users' Guide , 1995 .
[17] William Gropp,et al. Efficient Management of Parallelism in Object-Oriented Numerical Software Libraries , 1997, SciTools.
[18] Chau-Wen Tseng,et al. Improving data locality with loop transformations , 1996, TOPL.
[19] Paul Vinson Stodghill,et al. A Relational Approach to the Automatic Generation of Sequential Sparse matrix Codes , 1997 .
[20] Keshav Pingali,et al. Compiling Parallel Sparse Code for User-Defined Data Structures , 1997, PPSC.
[21] Keshav Pingali,et al. A Relational Approach to the Compilation of Sparse Matrix Programs , 1997, Euro-Par.
[22] Jack J. Dongarra,et al. Automatically Tuned Linear Algebra Software , 1998, Proceedings of the IEEE/ACM SC98 Conference.
[23] William Pugh,et al. SIPR: A New Framework for Generating Efficient Code for Sparse Matrix Computations , 1998, LCPC.
[24] Keshav Pingali,et al. Relational Algebraic Techniques for the Synthesis of Sparse Matrix Programs , 1999 .
[25] J. Kolecki. An Introduction to Tensors for Students of Physics and Engineering , 2002 .
[26] A data locality optimizing algorithm , 2004, SIGP.
[27] Katherine Yelick,et al. OSKI: A library of automatically tuned sparse matrix kernels , 2005 .
[28] David E. Bernholdt,et al. Automatic code generation for many-body electronic structure methods: the tensor contraction engine , 2006 .
[29] Tamara G. Kolda,et al. Efficient MATLAB Computations with Sparse and Factored Tensors , 2007, SIAM J. Sci. Comput..
[30] James Bennett,et al. The Netflix Prize , 2007 .
[31] Samuel Williams,et al. Optimization of sparse matrix-vector multiplication on emerging multicore platforms , 2007, Proceedings of the 2007 ACM/IEEE Conference on Supercomputing (SC '07).
[32] Scott Thibault,et al. Generating Indexing Functions of Regularly Sparse Arrays for Array Compilers , 2007 .
[33] John R. Gilbert,et al. On the representation and multiplication of hypersparse matrices , 2008, 2008 IEEE International Symposium on Parallel and Distributed Processing.
[34] Michael W. Berry,et al. Discussion Tracking in Enron Email using PARAFAC. , 2008 .
[35] John R. Gilbert,et al. Parallel sparse matrix-vector and matrix-transpose-vector multiplication using compressed sparse blocks , 2009, SPAA '09.
[36] Krishna P. Gummadi,et al. On the evolution of user interaction in Facebook , 2009, WOSN '09.
[37] Conrad Sanderson,et al. Armadillo: An Open Source C++ Linear Algebra Library for Fast Prototyping and Computationally Intensive Experiments , 2010 .
[38] Tjerk P. Straatsma,et al. NWChem: A comprehensive and scalable open-source solution for large scale molecular simulations , 2010, Comput. Phys. Commun..
[39] Gaël Varoquaux,et al. The NumPy Array: A Structure for Efficient Numerical Computation , 2011, Computing in Science & Engineering.
[40] Gilad Arnold,et al. Data-Parallel Language for Correct and Efficient Sparse Matrix Codes , 2011 .
[41] Timothy A. Davis,et al. The university of Florida sparse matrix collection , 2011, TOMS.
[42] Katherine Yelick,et al. Autotuning Sparse Matrix-Vector Multiplication for Multicore , 2012 .
[43] Alan Edelman,et al. Julia: A Fast Dynamic Language for Technical Computing , 2012, ArXiv.
[44] Benoît Meister,et al. Efficient and scalable computations with sparse tensors , 2012, 2012 IEEE Conference on High Performance Extreme Computing.
[45] Evgeny Epifanovsky,et al. New implementation of high‐level correlated methods using a general block tensor library for high‐performance electronic structure calculations , 2013, J. Comput. Chem..
[46] Jure Leskovec,et al. Hidden factors and hidden topics: understanding rating dimensions with review text , 2013, RecSys.
[47] Markus Püschel,et al. A Basic Linear Algebra Compiler , 2014, CGO '14.
[48] Lenore R. Mullin,et al. Scalable, Portable, Verifiable Kronecker Products on Multi-scale Computers , 2014, Constraint Programming and Decision Making.
[49] Anima Anandkumar,et al. Tensor decompositions for learning latent variable models , 2012, J. Mach. Learn. Res..
[50] Huasha Zhao,et al. High Performance Machine Learning through Codesign and Rooflining , 2014 .
[51] John F. Stanton,et al. A massively parallel tensor contraction framework for coupled-cluster computations , 2014, J. Parallel Distributed Comput..
[52] Elizabeth R. Jessup,et al. Reliable Generation of High-Performance Matrix Algebra , 2012, ACM Trans. Math. Softw..
[53] Mary W. Hall,et al. Loop and data transformations for sparse matrix code , 2015, PLDI.
[54] Torsten Hoefler,et al. Sparse Tensor Algebra as a Parallel Programming Model , 2015, ArXiv.
[55] Jimeng Sun,et al. An input-adaptive and in-place approach to dense tensor-times-matrix multiply , 2015, SC15: International Conference for High Performance Computing, Networking, Storage and Analysis.
[56] Benoît Meister,et al. Optimization of symmetric tensor computations , 2015, 2015 IEEE High Performance Extreme Computing Conference (HPEC).
[57] Bora Uçar,et al. Scalable sparse tensor decompositions in distributed memory systems , 2015, SC15: International Conference for High Performance Computing, Networking, Storage and Analysis.
[58] George Karypis,et al. Tensor-matrix products with a compressed sparse tensor , 2015, IA3@SC.
[59] Nikos D. Sidiropoulos,et al. SPLATT: Efficient and Parallel Sparse Tensor-Matrix Multiplication , 2015, 2015 IEEE International Parallel and Distributed Processing Symposium.
[60] Hongbo Rong,et al. Sparso: Context-driven optimizations of sparse linear algebra , 2016, 2016 International Conference on Parallel Architecture and Compilation Techniques (PACT).
[61] Yuan Yu,et al. TensorFlow: A system for large-scale machine learning , 2016, OSDI.
[62] Richard W. Vuduc,et al. Optimizing Sparse Tensor Times Matrix on Multi-core and Many-Core Architectures , 2016, 2016 6th Workshop on Irregular Applications: Architecture and Algorithms (IA3).
[63] Wojciech Matusik,et al. Simit , 2016, ACM Trans. Graph..
[64] Hongbo Rong,et al. Automating Wavefront Parallelization for Sparse Matrix Computations , 2016, SC16: International Conference for High Performance Computing, Networking, Storage and Analysis.
[65] Devin A. Matthews,et al. High-Performance Tensor Contraction without Transposition , 2016, SIAM J. Sci. Comput..
[66] Paolo Bientinesi,et al. Design of a High-Performance GEMM-like Tensor–Tensor Multiplication , 2016, ACM Trans. Math. Softw..