Rare Germline Variants Are Associated with Rapid Biochemical Recurrence After Radical Prostate Cancer Treatment: A Pan Prostate Cancer Group Study.

[1]  R. Eeles,et al.  Identification of Germline Genetic Variants that Increase Prostate Cancer Risk and Influence Development of Aggressive Disease , 2021, Cancers.

[2]  D. Golland,et al.  CamDavidsonPilon/lifelines: v0.25.11 , 2020 .

[3]  Jaime Fern'andez del R'io,et al.  Array programming with NumPy , 2020, Nature.

[4]  Joel Nothman,et al.  SciPy 1.0-Fundamental Algorithms for Scientific Computing in Python , 2019, ArXiv.

[5]  Ryan L. Collins,et al.  The mutational constraint spectrum quantified from variation in 141,456 humans , 2020, Nature.

[6]  R. Eeles,et al.  Germline DNA Repair Gene Mutations in Young-onset Prostate Cancer Cases in the UK: Evidence for a More Extensive Genetic Panel , 2019, European urology.

[7]  Robert Lesurf,et al.  Molecular landmarks of tumor hypoxia across cancer types , 2019, Nature Genetics.

[8]  Mark Gerstein,et al.  GENCODE reference annotation for the human and mouse genomes , 2018, Nucleic Acids Res..

[9]  Takafumi N. Yamaguchi,et al.  Molecular Evolution of Early-Onset Prostate Cancer Identifies Molecular Risk Markers and Clinical Trajectories. , 2018, Cancer cell.

[10]  Yassen Assenov,et al.  Maftools: efficient and comprehensive analysis of somatic variants in cancer , 2018, Genome research.

[11]  R. Eeles,et al.  Rare germline variants in DNA repair genes and the angiogenesis pathway predispose prostate cancer patients to develop metastatic disease , 2018, British Journal of Cancer.

[12]  P. Boutros,et al.  Development and Validation of a 28-gene Hypoxia-related Prognostic Signature for Localized Prostate Cancer , 2018, EBioMedicine.

[13]  B. Fraile,et al.  PI3K pathway and Bcl-2 family. Clinicopathological features in prostate cancer , 2018, The aging male : the official journal of the International Society for the Study of the Aging Male.

[14]  T. H. van der Kwast,et al.  A Prostate Cancer "Nimbosus": Genomic Instability and SChLAP1 Dysregulation Underpin Aggression of Intraductal and Cribriform Subpathologies. , 2017, European urology.

[15]  P. Nelson,et al.  PTEN loss is associated with prostate cancer recurrence and alterations in tumor DNA methylation profiles , 2017, Oncotarget.

[16]  F. Montorsi,et al.  New surgical approaches for clinically high-risk or metastatic prostate cancer , 2017, Expert review of anticancer therapy.

[17]  V. Budach,et al.  Defining biochemical recurrence after radical prostatectomy and timing of early salvage radiotherapy , 2017, Strahlentherapie und Onkologie.

[18]  Alain Bergeron,et al.  Genomic hallmarks of localized, non-indolent prostate cancer , 2017, Nature.

[19]  J. Mesirov,et al.  The Molecular Signatures Database Hallmark Gene Set Collection , 2015 .

[20]  M. Cooperberg,et al.  Genomic Predictors of Outcome in Prostate Cancer. , 2015, European urology.

[21]  Gabor T. Marth,et al.  A global reference for human genetic variation , 2015, Nature.

[22]  Gonçalo R. Abecasis,et al.  Unified representation of genetic variants , 2015, Bioinform..

[23]  Andrew Menzies,et al.  Analysis of the Genetic Phylogeny of Multifocal Prostate Cancer Identifies Multiple Independent Clonal Expansions in Neoplastic and Morphologically Normal Prostate Tissue , 2015, Nature Genetics.

[24]  Igor Jurisica,et al.  Tumour genomic and microenvironmental heterogeneity for integrated prediction of 5-year biochemical recurrence of prostate cancer: a retrospective cohort study. , 2014, The Lancet. Oncology.

[25]  J. Shendure,et al.  A general framework for estimating the relative pathogenicity of human genetic variants , 2014, Nature Genetics.

[26]  P. Scardino,et al.  Strategy for detection of prostate cancer based on relation between prostate specific antigen at age 40-55 and long term risk of metastasis: case-control study , 2013, BMJ : British Medical Journal.

[27]  David Levine,et al.  A high-performance computing toolset for relatedness and principal component analysis of SNP data , 2012, Bioinform..

[28]  G. Abecasis,et al.  Detecting and estimating contamination of human DNA samples in sequencing and array-based genotype data. , 2012, American journal of human genetics.

[29]  J. Hicks,et al.  Loss of PTEN expression is associated with increased risk of recurrence after prostatectomy for clinically localized prostate cancer , 2012, Modern Pathology.

[30]  M. DePristo,et al.  A framework for variation discovery and genotyping using next-generation DNA sequencing data , 2011, Nature Genetics.

[31]  A. Morris,et al.  Data quality control in genetic case-control association studies , 2010, Nature Protocols.

[32]  M. DePristo,et al.  The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. , 2010, Genome research.

[33]  Richard Durbin,et al.  Fast and accurate long-read alignment with Burrows–Wheeler transform , 2010, Bioinform..

[34]  J. Bartlett,et al.  Phosphorylation of the androgen receptor is associated with reduced survival in hormone-refractory prostate cancer patients , 2008, British Journal of Cancer.

[35]  D. Troyer,et al.  Determining Risk of Biochemical Recurrence in Prostate Cancer by Immunohistochemical Detection of PTEN Expression and Akt Activation , 2007, Clinical Cancer Research.

[36]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[37]  Brian E. Granger,et al.  IPython: A System for Interactive Scientific Computing , 2007, Computing in Science & Engineering.

[38]  Michael W Kattan,et al.  Cancer control with radical prostatectomy alone in 1,000 consecutive patients. , 2002, The Journal of urology.

[39]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .