Neural machine translation using bitmap fonts

Recently, translation systems based on neural networks are starting to compete with systems based on phrases. The systems which are based on neural networks use vectorial repre- sentations of words. However, one of the biggest challenges that machine translation still faces, is dealing with large vocabularies and morphologically rich languages. This work aims to adapt a neural machine translation system to translate from Chinese to Spanish, using as input different types of granularity: words, characters, bitmap fonts of Chinese characters or words. The fact of performing the interpretation of every character or word as a bitmap font allows for obtaining more informed vectorial representations. Best results are obtained when using the information of the word bitmap font.