A Synchronization-Desynchronization Code for Natural Communication Signals

Synchronous spiking of neural populations is hypothesized to play important computational roles in forming neural assemblies and solving the binding problem. Although the opposite phenomenon of desynchronization is well known from EEG studies, it is largely neglected on the neuronal level. We here provide an example of in vivo recordings from weakly electric fish demonstrating that, depending on the social context, different types of natural communication signals elicit transient desynchronization as well as synchronization of the electroreceptor population without changing the mean firing rate. We conclude that, in general, both positive and negative changes in the degree of synchrony can be the relevant signals for neural information processing.

[1]  G. Laurent,et al.  Intrinsic and Circuit Properties Favor Coincidence Detection for Decoding Oscillatory Input , 2004, The Journal of Neuroscience.

[2]  M. A. MacIver,et al.  Prey capture in the weakly electric fish Apteronotus albifrons: sensory acquisition strategies and electrosensory consequences. , 1999, The Journal of experimental biology.

[3]  I. Nelken,et al.  Responses of Neurons in Cat Primary Auditory Cortex to Bird Chirps: Effects of Temporal and Spectral Context , 2002, The Journal of Neuroscience.

[4]  Brent Doiron,et al.  Theory of oscillatory firing induced by spatially correlated noise and delayed inhibitory feedback. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  Walter Heiligenberg,et al.  How electroreceptors encode JAR-eliciting stimulus regimes: Reading trajectories in a phase-amplitude plane , 1981, Journal of comparative physiology.

[6]  C. Keller,et al.  Hormone-induced and maturational changes in electric organ discharges and electroreceptor tuning in the weakly electric fishApteronotus , 1987, Journal of Comparative Physiology A.

[7]  L. Maler,et al.  Inhibition evoked from primary afferents in the electrosensory lateral line lobe of the weakly electric fish (Apteronotus leptorhynchus). , 1998, Journal of neurophysiology.

[8]  H. Karten,et al.  Differential projections of ordinary lateral line receptors and electroreceptors in the gymnotid fish, Apteronotus (Sternarchus) albifrons , 1974, The Journal of comparative neurology.

[9]  W. Singer,et al.  Modification of discharge patterns of neocortical neurons by induced oscillations of the membrane potential , 1998, Neuroscience.

[10]  M. Nelson,et al.  Logarithmic time course of sensory adaptation in electrosensory afferent nerve fibers in a weakly electric fish. , 1996, Journal of neurophysiology.

[11]  Gert Pfurtscheller,et al.  Alpha power dependent light stimulation: dynamics of event-related (de)synchronization in human electroencephalogram. , 2004, Brain research. Cognitive brain research.

[12]  Bob W. van Dijk,et al.  Visual stimulation reduces EEG activity in man , 1991, Brain Research.

[13]  Günther K. H. Zupanc,et al.  From oscillators to modulators: behavioral and neural control of modulations of the electric organ discharge in the gymnotiform fish, Apteronotus leptorhynchus , 2002, Journal of Physiology-Paris.

[14]  Bard Ermentrout,et al.  Type I Membranes, Phase Resetting Curves, and Synchrony , 1996, Neural Computation.

[15]  Y. Dan,et al.  Coding of visual information by precisely correlated spikes in the lateral geniculate nucleus , 1998, Nature Neuroscience.

[16]  J. Bastian Electrolocation: I. How the electroreceptors ofApteronotus albifrons code for moving objects and other electrical stimuli , 1981 .

[17]  Brent Doiron,et al.  Inhibitory feedback required for network oscillatory responses to communication but not prey stimuli , 2003, Nature.

[18]  L. Maler,et al.  The cytology of the posterior lateral line lobe of high‐frequency weakly electric fish (gymnotidae): Dendritic differentiation and synaptic specificity in a simple cortex , 1981, The Journal of comparative neurology.

[19]  W. Singer,et al.  Dynamic predictions: Oscillations and synchrony in top–down processing , 2001, Nature Reviews Neuroscience.

[20]  A. Thiele,et al.  Neuronal synchrony does not correlate with motion coherence in cortical area MT , 2003, Nature.

[21]  C. Carr,et al.  Peripheral organization and central projections of the electrosensory nerves in gymnotiform fish , 1982, The Journal of comparative neurology.

[22]  Victor A. F. Lamme,et al.  Neuronal synchrony does not represent texture segregation , 1998, Nature.

[23]  M K Habib,et al.  Dynamics of neuronal firing correlation: modulation of "effective connectivity". , 1989, Journal of neurophysiology.

[24]  Marius Usher,et al.  The Effect of Synchronized Inputs at the Single Neuron Level , 1994, Neural Computation.

[25]  C. Gray,et al.  Adaptive Coincidence Detection and Dynamic Gain Control in Visual Cortical Neurons In Vivo , 2003, Neuron.

[26]  H. Zakon,et al.  Effects of sex, sensitivity and status on cue recognition in the weakly electric fish Apteronotus leptorhynchus , 2003, Animal Behaviour.

[27]  Christof Koch,et al.  Stimulus Encoding and Feature Extraction by Multiple Sensory Neurons , 2002, The Journal of Neuroscience.

[28]  H. Spekreijse,et al.  Synchrony dynamics in monkey V1 predict success in visual detection. , 2006, Cerebral cortex.

[29]  L. Maler,et al.  Negative Interspike Interval Correlations Increase the Neuronal Capacity for Encoding Time-Dependent Stimuli , 2001, The Journal of Neuroscience.

[30]  Yasushi Miyashita,et al.  Dynamically Modulated Spike Correlation in Monkey Inferior Temporal Cortex Depending on the Feature Configuration within a Whole Object , 2005, The Journal of Neuroscience.

[31]  G. Laurent Dynamical representation of odors by oscillating and evolving neural assemblies , 1996, Trends in Neurosciences.

[32]  P. Somogyi,et al.  Proximally targeted GABAergic synapses and gap junctions synchronize cortical interneurons , 2000, Nature Neuroscience.

[33]  Jerry D. Nguyenkim,et al.  Arginine vasotocin modulates a sexually dimorphic communication behavior in the weakly electric fish Apteronotus leptorhynchus. , 2001, The Journal of experimental biology.

[34]  Leonard Maler,et al.  Evoked chirping in the weakly electric fish Apteronotus leptorhynchus: a quantitative biophysical analysis , 1993 .

[35]  Walter Heiligenberg,et al.  The coding of signals in the electric communication of the gymnotiform fish Eigenmannia: From electroreceptors to neurons in the torus semicircularis of the midbrain , 1991, Journal of Comparative Physiology A.

[36]  M. E. Nelson,et al.  Characterization and modeling of P-type electrosensory afferent responses to amplitude modulations in a wave-type electric fish , 1997, Journal of Comparative Physiology A.

[37]  Walter Heiligenberg,et al.  Structure and function of neurons in the complex of the nucleus electrosensorius of the gymnotiform fish Eigenmannia: Detection and processing of electric signals in social communication , 1991, Journal of Comparative Physiology A.

[38]  Nicolas Fourcaud-Trocmé,et al.  Correlation-induced Synchronization of Oscillations in Olfactory Bulb Neurons , 2022 .

[39]  Maurice J Chacron,et al.  Electroreceptor neuron dynamics shape information transmission , 2005, Nature Neuroscience.

[40]  Brent Doiron,et al.  Non-classical receptive field mediates switch in a sensory neuron's frequency tuning , 2003, Nature.

[41]  Wolf Singer,et al.  Neuronal Synchrony: A Versatile Code for the Definition of Relations? , 1999, Neuron.

[42]  Andreas V. M. Herz,et al.  A Universal Model for Spike-Frequency Adaptation , 2003, Neural Computation.

[43]  W Singer,et al.  Visual feature integration and the temporal correlation hypothesis. , 1995, Annual review of neuroscience.

[44]  G. Laurent,et al.  Multiplexing using synchrony in the zebrafish olfactory bulb , 2004, Nature Neuroscience.

[45]  G. Engler,et al.  Spontaneous modulations of the electric organ discharge in the weakly electric fish, Apteronotus leptorhynchus: a biophysical and behavioral analysis , 2000, Journal of Comparative Physiology A.

[46]  L. Maler,et al.  Neural architecture of the electrosensory lateral line lobe: adaptations for coincidence detection, a sensory searchlight and frequency-dependent adaptive filtering , 1999, The Journal of experimental biology.

[47]  Harold H. Zakon,et al.  A “Sample-and-Hold” Pulse-Counting Integrator as a Mechanism for Graded Memory Underlying Sensorimotor Adaptation , 2006, Neuron.

[48]  R Ratnam,et al.  Nonrenewal Statistics of Electrosensory Afferent Spike Trains: Implications for the Detection of Weak Sensory Signals , 2000, The Journal of Neuroscience.

[49]  Carlos D. Brody,et al.  Correlations Without Synchrony , 1999, Neural Computation.

[50]  T Szabo,et al.  Electroreceptor mechanisms in a high-frequency weakly electric fish, Sternarchus albifrons. , 1965, Journal of neurophysiology.

[51]  W. Singer,et al.  Role of Reticular Activation in the Modulation of Intracortical Synchronization , 1996, Science.

[52]  M. Tachibana,et al.  Synchronized retinal oscillations encode essential information for escape behavior in frogs , 2005, Nature Neuroscience.

[53]  Maurice J Chacron,et al.  Feedback and Feedforward Control of Frequency Tuning to Naturalistic Stimuli , 2005, The Journal of Neuroscience.

[54]  K. Harris Neural signatures of cell assembly organization , 2005, Nature Reviews Neuroscience.

[55]  H. Zakon,et al.  EOD modulations of brown ghost electric fish: JARs, chirps, rises, and dips , 2002, Journal of Physiology-Paris.

[56]  Ido Perlman,et al.  Light-Induced Changes in Spike Synchronization between Coupled ON Direction Selective Ganglion Cells in the Mammalian Retina , 2006, The Journal of Neuroscience.

[57]  Carl D. Hopkins,et al.  Stimulus filtering and electroreception: Tuberous electroreceptors in three species of Gymnotoid fish , 2004, Journal of comparative physiology.

[58]  S. Hestrin,et al.  Spike Transmission and Synchrony Detection in Networks of GABAergic Interneurons , 2001, Science.

[59]  Kramer,et al.  Waveform discrimination, phase sensitivity and jamming avoidance in a wave-type electric fish , 1999, The Journal of experimental biology.

[60]  Markus Bongard,et al.  Retinal ganglion cell synchronization by fixational eye movements improves feature estimation , 2002, Nature Neuroscience.

[61]  A Aertsen,et al.  Propagation of synchronous spiking activity in feedforward neural networks , 1996, Journal of Physiology-Paris.

[62]  R. H. Hamstra,et al.  Coding properties of two classes of afferent nerve fibers: high-frequency electroreceptors in the electric fish, Eigenmannia. , 1973, Journal of neurophysiology.

[63]  Walter Heiligenberg,et al.  Court and spark: electric signals in the courtship and mating of gymnotoid fish , 1985, Animal Behaviour.

[64]  F. Varela,et al.  Perception's shadow: long-distance synchronization of human brain activity , 1999, Nature.

[65]  Paul H. E. Tiesinga,et al.  A New Correlation-Based Measure of Spike Timing Reliability , 2002, Neurocomputing.

[66]  G. Zupanc,et al.  Electric interactions through chirping behavior in the weakly electric fish, Apteronotus leptorhynchus , 2006, Journal of Comparative Physiology.

[67]  L. Maler,et al.  Spike-Frequency Adaptation Separates Transient Communication Signals from Background Oscillations , 2005, The Journal of Neuroscience.

[68]  W. Singer,et al.  Temporal coding in the visual cortex: new vistas on integration in the nervous system , 1992, Trends in Neurosciences.

[69]  L. Robertson Binding, spatial attention and perceptual awareness , 2003, Nature Reviews Neuroscience.

[70]  D. Wilkin,et al.  Neuron , 2001, Brain Research.