Flip-Flop Energy/Performance Versus Clock Slope and Impact on the Clock Network Design

In this paper, the influence of the clock slope on the speed of various classes of flip-flops (FFs) and on the overall energy dissipation of both FFs and clock domain buffers is analyzed. Analysis shows that an optimum clock slope exists, which minimizes the energy spent in a clock domain. Results show that the clock slope requirement can be relaxed with respect to traditional assumptions, leading up to 30 ÷40 % energy savings and at a very small speed performance penalty. The effectiveness of the clock slope optimization is discussed in detail for the existing classes of FFs. The impact of such an optimization in terms of additive skew and jitter contributions is discussed, together to the analysis of the impact of technology scaling. Extensive post-layout simulations on a 65-nm CMOS technology are performed to check the validity of the underlying assumptions and approximations.

[1]  Samuel D. Naffziger,et al.  The implementation of the Itanium 2 microprocessor , 2002, IEEE J. Solid State Circuits.

[2]  J. Tschanz,et al.  Comparative delay and energy of single edge-triggered and dual edge-triggered pulsed flip-flops for high-performance microprocessors , 2001, ISLPED'01: Proceedings of the 2001 International Symposium on Low Power Electronics and Design (IEEE Cat. No.01TH8581).

[3]  Anurag Mittal,et al.  Nano-CMOS Circuit and Physical Design , 2004 .

[4]  Vojin G. Oklobdzija,et al.  Conditional techniques for low power consumption flip-flops , 2001, ICECS 2001. 8th IEEE International Conference on Electronics, Circuits and Systems (Cat. No.01EX483).

[5]  F. Weber,et al.  Flow-through latch and edge-triggered flip-flop hybrid elements , 1996, 1996 IEEE International Solid-State Circuits Conference. Digest of TEchnical Papers, ISSCC.

[6]  Massimo Alioto,et al.  Impact of Supply Voltage Variations on Full Adder Delay: Analysis and Comparison , 2006, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[7]  Jan M. Rabaey,et al.  Digital Integrated Circuits: A Design Perspective , 1995 .

[8]  C. Svensson,et al.  Impact of clock slope on true single phase clocked (TSPC) CMOS circuits , 1994, IEEE J. Solid State Circuits.

[9]  Vladimir Stojanovic,et al.  Comparative analysis of master-slave latches and flip-flops for high-performance and low-power systems , 1999, IEEE J. Solid State Circuits.

[10]  Tadahiro Kuroda,et al.  Overview of low-power ULSI circuit techniques , 1999 .

[11]  V.G. Oklobdzija,et al.  A low power symmetrically pulsed dual edge–triggered flip–flop , 2002, Proceedings of the 28th European Solid-State Circuits Conference.

[12]  Sachin S. Sapatnekar,et al.  Clock distribution using multiple voltages , 1999, Proceedings. 1999 International Symposium on Low Power Electronics and Design (Cat. No.99TH8477).

[13]  Vladimir Stojanovic,et al.  Digital System Clocking: High-Performance and Low-Power Aspects , 2003 .

[14]  Massimo Alioto,et al.  Understanding the Effect of Process Variations on the Delay of Static and Domino Logic , 2010, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[15]  James Tschanz,et al.  Comparative delay and energy of single edge-triggered & dual edge-triggered pulsed flip-flops for high-performance microprocessors , 2001, ISLPED '01.

[16]  Parameswaran Ramanathan,et al.  Clock distribution in general VLSI circuits , 1994 .

[17]  V.G. Oklobdzija,et al.  A clock skew absorbing flip-flop , 2003, 2003 IEEE International Solid-State Circuits Conference, 2003. Digest of Technical Papers. ISSCC..

[18]  Antonio Cantoni,et al.  Characterization of a Flip-Flop Metastability Measurement Method , 2007, IEEE Transactions on Circuits and Systems I: Regular Papers.

[19]  Vojin G. Oklobdzija,et al.  Dual-edge triggered storage elements and clocking strategy for low-power systems , 2005, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[20]  Malgorzata Marek-Sadowska Ashok Vittal Power Optimal Buffered Clock Tree Design , 1995, 32nd Design Automation Conference.

[21]  S. Hsu,et al.  Effectiveness and scaling trends of leakage control techniques for sub-130 nm CMOS technologies , 2003, Proceedings of the 2003 International Symposium on Low Power Electronics and Design, 2003. ISLPED '03..

[22]  H. Fair,et al.  Clocking design and analysis for a 600 MHz Alpha microprocessor , 1998, 1998 IEEE International Solid-State Circuits Conference. Digest of Technical Papers, ISSCC. First Edition (Cat. No.98CH36156).

[23]  Robert W. Brodersen,et al.  Analysis and design of low-energy flip-flops , 2001, ISLPED '01.

[24]  Massimo Alioto,et al.  General Strategies to Design Nanometer Flip-Flops in the Energy-Delay Space , 2010, IEEE Transactions on Circuits and Systems I: Regular Papers.

[25]  Vojin G. Oklobdzija,et al.  High-Performance Energy-Efficient Microprocessor Design (Series on Integrated Circuits and Systems) , 2006 .

[26]  Peiyi Zhao,et al.  Low power and high speed explicit-pulsed flip-flops , 2002, The 2002 45th Midwest Symposium on Circuits and Systems, 2002. MWSCAS-2002..

[27]  Manoj Sachdev,et al.  Low power, testable dual edge triggered flip-flops , 1996, Proceedings of 1996 International Symposium on Low Power Electronics and Design.

[28]  Vojin G. Oklobdzija,et al.  High-performance energy-efficient microprocessor design , 2006 .

[29]  Tomás Lang,et al.  Individual flip-flops with gated clocks for low power datapaths , 1997 .

[30]  Kurt Keutzer,et al.  Estimation of average switching activity in combinational logic circuits using symbolic simulation , 1997, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[31]  Sani R. Nassif,et al.  Design for Manufacturability and Statistical Design - A Constructive Approach , 2007, Series on integrated circuits and systems.

[32]  V.G. Oklobdzija,et al.  Improved sense-amplifier-based flip-flop: design and measurements , 2000, IEEE Journal of Solid-State Circuits.

[33]  E. You,et al.  A third-generation SPARC V9 64-b microprocessor , 2000, IEEE Journal of Solid-State Circuits.

[34]  S. Naffziger,et al.  Statistical clock skew modeling with data delay variations , 2001, IEEE Trans. Very Large Scale Integr. Syst..

[35]  Ken Mai,et al.  The future of wires , 2001, Proc. IEEE.

[36]  V.G. Oklobdzija,et al.  The Effect of the System Specification on the Optimal Selection of Clocked Storage Elements , 2007, IEEE Journal of Solid-State Circuits.

[37]  David Harris,et al.  Skew-Tolerant Circuit Design , 2000 .

[38]  R. Allmon,et al.  High-performance microprocessor design , 1998, IEEE J. Solid State Circuits.

[39]  Shantanu Ganguly,et al.  Clock Distribution Methodology for PowerPC™ Microprocessors , 1997, J. VLSI Signal Process..

[40]  Young-Hyun Jun,et al.  Conditional-capture flip-flop for statistical power reduction , 2001, IEEE J. Solid State Circuits.

[41]  A. Alvandpour,et al.  Jitter Characteristic in Charge Recovery Resonant Clock Distribution , 2007, IEEE Journal of Solid-State Circuits.

[42]  Vojin G. Oklobdzija,et al.  Clocked Storage Elements in Digital Systems , 2006 .

[43]  Vojin G. Oklobdzija Clocking and clocked storage elements in a multi-gigahertz environment , 2003, IBM J. Res. Dev..

[44]  Tarek Darwish,et al.  High-performance and low-power conditional discharge flip-flop , 2004, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[45]  Lawrence T. Pileggi,et al.  Clustering and load balancing for buffered clock tree synthesis , 1997, Proceedings International Conference on Computer Design VLSI in Computers and Processors.